Matches in SemOpenAlex for { <https://semopenalex.org/work/W2737026006> ?p ?o ?g. }
- W2737026006 abstract "This paper studies the nonparametric modal regression problem systematically from a statistical learning view. Originally motivated by pursuing a theoretical understanding of the maximum correntropy criterion based regression (MCCR), our study reveals that MCCR with a tending-to-zero scale parameter is essentially modal regression. We show that nonparametric modal regression problem can be approached via the classical empirical risk minimization. Some efforts are then made to develop a framework for analyzing and implementing modal regression. For instance, the modal regression function is described, the modal regression risk is defined explicitly and its textit{Bayes} rule is characterized; for the sake of computational tractability, the surrogate modal regression risk, which is termed as the generalization risk in our study, is introduced. On the theoretical side, the excess modal regression risk, the excess generalization risk, the function estimation error, and the relations among the above three quantities are studied rigorously. It turns out that under mild conditions, function estimation consistency and convergence may be pursued in modal regression as in vanilla regression protocols, such as mean regression, median regression, and quantile regression. However, it outperforms these regression models in terms of robustness as shown in our study from a re-descending M-estimation view. This coincides with and in return explains the merits of MCCR on robustness. On the practical side, the implementation issues of modal regression including the computational algorithm and the tuning parameters selection are discussed. Numerical assessments on modal regression are also conducted to verify our findings empirically." @default.
- W2737026006 created "2017-07-31" @default.
- W2737026006 creator A5023023327 @default.
- W2737026006 creator A5040328543 @default.
- W2737026006 creator A5078854904 @default.
- W2737026006 date "2017-02-20" @default.
- W2737026006 modified "2023-09-27" @default.
- W2737026006 title "A Statistical Learning Approach to Modal Regression" @default.
- W2737026006 cites W1542886316 @default.
- W2737026006 cites W1560144238 @default.
- W2737026006 cites W1606103313 @default.
- W2737026006 cites W1698155719 @default.
- W2737026006 cites W1903303072 @default.
- W2737026006 cites W1965970970 @default.
- W2737026006 cites W1981760120 @default.
- W2737026006 cites W1982032418 @default.
- W2737026006 cites W1986855815 @default.
- W2737026006 cites W1990615141 @default.
- W2737026006 cites W1991807234 @default.
- W2737026006 cites W1991962122 @default.
- W2737026006 cites W1995620735 @default.
- W2737026006 cites W1997678483 @default.
- W2737026006 cites W2009209064 @default.
- W2737026006 cites W2023163512 @default.
- W2737026006 cites W2039540767 @default.
- W2737026006 cites W2044650298 @default.
- W2737026006 cites W2047647925 @default.
- W2737026006 cites W2066674838 @default.
- W2737026006 cites W2067191022 @default.
- W2737026006 cites W2069421937 @default.
- W2737026006 cites W2069627663 @default.
- W2737026006 cites W2081245850 @default.
- W2737026006 cites W2083575259 @default.
- W2737026006 cites W2087199327 @default.
- W2737026006 cites W2088870374 @default.
- W2737026006 cites W2090889380 @default.
- W2737026006 cites W2092337891 @default.
- W2737026006 cites W2095533358 @default.
- W2737026006 cites W2096874911 @default.
- W2737026006 cites W2113713615 @default.
- W2737026006 cites W2118020555 @default.
- W2737026006 cites W2118148215 @default.
- W2737026006 cites W2126761607 @default.
- W2737026006 cites W2129873515 @default.
- W2737026006 cites W2135160607 @default.
- W2737026006 cites W2141767566 @default.
- W2737026006 cites W2145881755 @default.
- W2737026006 cites W2148665023 @default.
- W2737026006 cites W2164500538 @default.
- W2737026006 cites W2524124821 @default.
- W2737026006 cites W2540421231 @default.
- W2737026006 cites W2963071156 @default.
- W2737026006 cites W2963604113 @default.
- W2737026006 cites W2963676822 @default.
- W2737026006 cites W3024853581 @default.
- W2737026006 cites W3101423575 @default.
- W2737026006 cites W565868953 @default.
- W2737026006 cites W597932189 @default.
- W2737026006 doi "https://doi.org/10.48550/arxiv.1702.05960" @default.
- W2737026006 hasPublicationYear "2017" @default.
- W2737026006 type Work @default.
- W2737026006 sameAs 2737026006 @default.
- W2737026006 citedByCount "6" @default.
- W2737026006 countsByYear W27370260062017 @default.
- W2737026006 countsByYear W27370260062018 @default.
- W2737026006 countsByYear W27370260062019 @default.
- W2737026006 countsByYear W27370260062020 @default.
- W2737026006 crossrefType "posted-content" @default.
- W2737026006 hasAuthorship W2737026006A5023023327 @default.
- W2737026006 hasAuthorship W2737026006A5040328543 @default.
- W2737026006 hasAuthorship W2737026006A5078854904 @default.
- W2737026006 hasBestOaLocation W27370260061 @default.
- W2737026006 hasConcept C105795698 @default.
- W2737026006 hasConcept C120068334 @default.
- W2737026006 hasConcept C152877465 @default.
- W2737026006 hasConcept C185592680 @default.
- W2737026006 hasConcept C188027245 @default.
- W2737026006 hasConcept C32224588 @default.
- W2737026006 hasConcept C33923547 @default.
- W2737026006 hasConcept C41008148 @default.
- W2737026006 hasConcept C57381214 @default.
- W2737026006 hasConcept C70259352 @default.
- W2737026006 hasConcept C71139939 @default.
- W2737026006 hasConcept C74127309 @default.
- W2737026006 hasConcept C83546350 @default.
- W2737026006 hasConceptScore W2737026006C105795698 @default.
- W2737026006 hasConceptScore W2737026006C120068334 @default.
- W2737026006 hasConceptScore W2737026006C152877465 @default.
- W2737026006 hasConceptScore W2737026006C185592680 @default.
- W2737026006 hasConceptScore W2737026006C188027245 @default.
- W2737026006 hasConceptScore W2737026006C32224588 @default.
- W2737026006 hasConceptScore W2737026006C33923547 @default.
- W2737026006 hasConceptScore W2737026006C41008148 @default.
- W2737026006 hasConceptScore W2737026006C57381214 @default.
- W2737026006 hasConceptScore W2737026006C70259352 @default.
- W2737026006 hasConceptScore W2737026006C71139939 @default.
- W2737026006 hasConceptScore W2737026006C74127309 @default.
- W2737026006 hasConceptScore W2737026006C83546350 @default.
- W2737026006 hasLocation W27370260061 @default.
- W2737026006 hasLocation W27370260062 @default.