Matches in SemOpenAlex for { <https://semopenalex.org/work/W2737079419> ?p ?o ?g. }
- W2737079419 abstract "Purpose: To develop a deep learning approach to digitally-stain optical coherence tomography (OCT) images of the optic nerve head (ONH). Methods: A horizontal B-scan was acquired through the center of the ONH using OCT (Spectralis) for 1 eye of each of 100 subjects (40 normal & 60 glaucoma). All images were enhanced using adaptive compensation. A custom deep learning network was then designed and trained with the compensated images to digitally stain (i.e. highlight) 6 tissue layers of the ONH. The accuracy of our algorithm was assessed (against manual segmentations) using the Dice coefficient, sensitivity, and specificity. We further studied how compensation and the number of training images affected the performance of our algorithm. Results: For images it had not yet assessed, our algorithm was able to digitally stain the retinal nerve fiber layer + prelamina, the retinal pigment epithelium, all other retinal layers, the choroid, and the peripapillary sclera and lamina cribrosa. For all tissues, the mean dice coefficient was $0.84 pm 0.03$, the mean sensitivity $0.92 pm 0.03$, and the mean specificity $0.99 pm 0.00$. Our algorithm performed significantly better when compensated images were used for training. Increasing the number of images (from 10 to 40) to train our algorithm did not significantly improve performance, except for the RPE. Conclusion. Our deep learning algorithm can simultaneously stain neural and connective tissues in ONH images. Our approach offers a framework to automatically measure multiple key structural parameters of the ONH that may be critical to improve glaucoma management." @default.
- W2737079419 created "2017-07-31" @default.
- W2737079419 creator A5002608604 @default.
- W2737079419 creator A5003710170 @default.
- W2737079419 creator A5022464374 @default.
- W2737079419 creator A5035391535 @default.
- W2737079419 creator A5052850959 @default.
- W2737079419 creator A5054878311 @default.
- W2737079419 creator A5075419354 @default.
- W2737079419 date "2017-07-24" @default.
- W2737079419 modified "2023-09-27" @default.
- W2737079419 title "A Deep Learning Approach to Digitally Stain Optical Coherence Tomography Images of the Optic Nerve Head" @default.
- W2737079419 cites W1522301498 @default.
- W2737079419 cites W1743819560 @default.
- W2737079419 cites W1884191083 @default.
- W2737079419 cites W1886888362 @default.
- W2737079419 cites W1901129140 @default.
- W2737079419 cites W1976404978 @default.
- W2737079419 cites W1988101395 @default.
- W2737079419 cites W1999377661 @default.
- W2737079419 cites W2000753532 @default.
- W2737079419 cites W2019974989 @default.
- W2737079419 cites W2038850290 @default.
- W2737079419 cites W2039221817 @default.
- W2737079419 cites W2051690312 @default.
- W2737079419 cites W2056467439 @default.
- W2737079419 cites W2060287042 @default.
- W2737079419 cites W2084620323 @default.
- W2737079419 cites W2085202667 @default.
- W2737079419 cites W2086306557 @default.
- W2737079419 cites W2093525192 @default.
- W2737079419 cites W2104788465 @default.
- W2737079419 cites W2124502133 @default.
- W2737079419 cites W2129075794 @default.
- W2737079419 cites W2138157582 @default.
- W2737079419 cites W2148623091 @default.
- W2737079419 cites W2154029877 @default.
- W2737079419 cites W2171459511 @default.
- W2737079419 cites W2276000118 @default.
- W2737079419 cites W2395611524 @default.
- W2737079419 cites W2439812318 @default.
- W2737079419 cites W2528337210 @default.
- W2737079419 cites W2547055928 @default.
- W2737079419 cites W2576587620 @default.
- W2737079419 cites W2585456719 @default.
- W2737079419 cites W2950612966 @default.
- W2737079419 cites W983744198 @default.
- W2737079419 hasPublicationYear "2017" @default.
- W2737079419 type Work @default.
- W2737079419 sameAs 2737079419 @default.
- W2737079419 citedByCount "0" @default.
- W2737079419 crossrefType "posted-content" @default.
- W2737079419 hasAuthorship W2737079419A5002608604 @default.
- W2737079419 hasAuthorship W2737079419A5003710170 @default.
- W2737079419 hasAuthorship W2737079419A5022464374 @default.
- W2737079419 hasAuthorship W2737079419A5035391535 @default.
- W2737079419 hasAuthorship W2737079419A5052850959 @default.
- W2737079419 hasAuthorship W2737079419A5054878311 @default.
- W2737079419 hasAuthorship W2737079419A5075419354 @default.
- W2737079419 hasConcept C108583219 @default.
- W2737079419 hasConcept C118487528 @default.
- W2737079419 hasConcept C120665830 @default.
- W2737079419 hasConcept C121332964 @default.
- W2737079419 hasConcept C124504099 @default.
- W2737079419 hasConcept C136229726 @default.
- W2737079419 hasConcept C142724271 @default.
- W2737079419 hasConcept C154945302 @default.
- W2737079419 hasConcept C163892561 @default.
- W2737079419 hasConcept C2776694393 @default.
- W2737079419 hasConcept C2777093970 @default.
- W2737079419 hasConcept C2777100477 @default.
- W2737079419 hasConcept C2778527774 @default.
- W2737079419 hasConcept C2778818243 @default.
- W2737079419 hasConcept C2780592520 @default.
- W2737079419 hasConcept C2780837183 @default.
- W2737079419 hasConcept C2781294515 @default.
- W2737079419 hasConcept C2983497740 @default.
- W2737079419 hasConcept C31972630 @default.
- W2737079419 hasConcept C41008148 @default.
- W2737079419 hasConcept C71924100 @default.
- W2737079419 hasConcept C74864618 @default.
- W2737079419 hasConcept C89600930 @default.
- W2737079419 hasConceptScore W2737079419C108583219 @default.
- W2737079419 hasConceptScore W2737079419C118487528 @default.
- W2737079419 hasConceptScore W2737079419C120665830 @default.
- W2737079419 hasConceptScore W2737079419C121332964 @default.
- W2737079419 hasConceptScore W2737079419C124504099 @default.
- W2737079419 hasConceptScore W2737079419C136229726 @default.
- W2737079419 hasConceptScore W2737079419C142724271 @default.
- W2737079419 hasConceptScore W2737079419C154945302 @default.
- W2737079419 hasConceptScore W2737079419C163892561 @default.
- W2737079419 hasConceptScore W2737079419C2776694393 @default.
- W2737079419 hasConceptScore W2737079419C2777093970 @default.
- W2737079419 hasConceptScore W2737079419C2777100477 @default.
- W2737079419 hasConceptScore W2737079419C2778527774 @default.
- W2737079419 hasConceptScore W2737079419C2778818243 @default.
- W2737079419 hasConceptScore W2737079419C2780592520 @default.
- W2737079419 hasConceptScore W2737079419C2780837183 @default.
- W2737079419 hasConceptScore W2737079419C2781294515 @default.
- W2737079419 hasConceptScore W2737079419C2983497740 @default.