Matches in SemOpenAlex for { <https://semopenalex.org/work/W2737112091> ?p ?o ?g. }
- W2737112091 endingPage "266" @default.
- W2737112091 startingPage "256" @default.
- W2737112091 abstract "Though like other domains such as email filtering, web page classification, sentiment analysis, and author identification, the researchers have employed the text categorization approach to automate organization and selection of design patterns. However, there is a need to bridge the gap between the semantic relationship between design patterns (i.e. Documents) and the features which are used for the organization of design patterns. In this study, we propose an approach by leveraging a powerful deep learning algorithm named Deep Belief Network (DBN) which learns on the semantic representation of documents formulated in the form of feature vectors. We performed a case study in the context of a text categorization based automated system used for the classification and selection of software design patterns. In the case study, we focused on two main research objectives: 1) to empirically investigate the effect of feature sets constructed through the global filter-based feature selection methods besides the proposed approach, and 2) to evaluate the significant improvement in the classification decision (i.e. Pattern organization) of classifiers using the proposed approach. The adjustment of DBN parameters such as a number of hidden layers, nodes and iteration can aid a developer to construct a more illustrative feature set. The experimental promising results suggest the significance of the proposed approach to construct a more representative feature set and improve the classifier’s performance in terms of organization of design patterns." @default.
- W2737112091 created "2017-07-31" @default.
- W2737112091 creator A5002497813 @default.
- W2737112091 creator A5004358723 @default.
- W2737112091 creator A5016445191 @default.
- W2737112091 creator A5035884247 @default.
- W2737112091 creator A5044974108 @default.
- W2737112091 creator A5049449184 @default.
- W2737112091 creator A5051403641 @default.
- W2737112091 creator A5057372016 @default.
- W2737112091 date "2018-07-01" @default.
- W2737112091 modified "2023-10-15" @default.
- W2737112091 title "Implications of deep learning for the automation of design patterns organization" @default.
- W2737112091 cites W1426199569 @default.
- W2737112091 cites W1545528966 @default.
- W2737112091 cites W1655956671 @default.
- W2737112091 cites W1662133657 @default.
- W2737112091 cites W1980064340 @default.
- W2737112091 cites W1982992442 @default.
- W2737112091 cites W1987593108 @default.
- W2737112091 cites W1999635750 @default.
- W2737112091 cites W2017317305 @default.
- W2737112091 cites W2019759670 @default.
- W2737112091 cites W2039492713 @default.
- W2737112091 cites W2068833644 @default.
- W2737112091 cites W2095000968 @default.
- W2737112091 cites W2100495367 @default.
- W2737112091 cites W2108150588 @default.
- W2737112091 cites W2136222411 @default.
- W2737112091 cites W2136922672 @default.
- W2737112091 cites W2150747245 @default.
- W2737112091 cites W2163922914 @default.
- W2737112091 cites W2167139114 @default.
- W2737112091 cites W2287577877 @default.
- W2737112091 cites W2360967250 @default.
- W2737112091 cites W2608983247 @default.
- W2737112091 cites W4245415816 @default.
- W2737112091 cites W4300629866 @default.
- W2737112091 cites W80463681 @default.
- W2737112091 doi "https://doi.org/10.1016/j.jpdc.2017.06.022" @default.
- W2737112091 hasPublicationYear "2018" @default.
- W2737112091 type Work @default.
- W2737112091 sameAs 2737112091 @default.
- W2737112091 citedByCount "38" @default.
- W2737112091 countsByYear W27371120912018 @default.
- W2737112091 countsByYear W27371120912019 @default.
- W2737112091 countsByYear W27371120912020 @default.
- W2737112091 countsByYear W27371120912021 @default.
- W2737112091 countsByYear W27371120912022 @default.
- W2737112091 countsByYear W27371120912023 @default.
- W2737112091 crossrefType "journal-article" @default.
- W2737112091 hasAuthorship W2737112091A5002497813 @default.
- W2737112091 hasAuthorship W2737112091A5004358723 @default.
- W2737112091 hasAuthorship W2737112091A5016445191 @default.
- W2737112091 hasAuthorship W2737112091A5035884247 @default.
- W2737112091 hasAuthorship W2737112091A5044974108 @default.
- W2737112091 hasAuthorship W2737112091A5049449184 @default.
- W2737112091 hasAuthorship W2737112091A5051403641 @default.
- W2737112091 hasAuthorship W2737112091A5057372016 @default.
- W2737112091 hasConcept C106131492 @default.
- W2737112091 hasConcept C119857082 @default.
- W2737112091 hasConcept C124101348 @default.
- W2737112091 hasConcept C138885662 @default.
- W2737112091 hasConcept C148483581 @default.
- W2737112091 hasConcept C154945302 @default.
- W2737112091 hasConcept C2776401178 @default.
- W2737112091 hasConcept C31972630 @default.
- W2737112091 hasConcept C41008148 @default.
- W2737112091 hasConcept C41895202 @default.
- W2737112091 hasConcept C94124525 @default.
- W2737112091 hasConcept C95623464 @default.
- W2737112091 hasConceptScore W2737112091C106131492 @default.
- W2737112091 hasConceptScore W2737112091C119857082 @default.
- W2737112091 hasConceptScore W2737112091C124101348 @default.
- W2737112091 hasConceptScore W2737112091C138885662 @default.
- W2737112091 hasConceptScore W2737112091C148483581 @default.
- W2737112091 hasConceptScore W2737112091C154945302 @default.
- W2737112091 hasConceptScore W2737112091C2776401178 @default.
- W2737112091 hasConceptScore W2737112091C31972630 @default.
- W2737112091 hasConceptScore W2737112091C41008148 @default.
- W2737112091 hasConceptScore W2737112091C41895202 @default.
- W2737112091 hasConceptScore W2737112091C94124525 @default.
- W2737112091 hasConceptScore W2737112091C95623464 @default.
- W2737112091 hasFunder F4320309893 @default.
- W2737112091 hasLocation W27371120911 @default.
- W2737112091 hasOpenAccess W2737112091 @default.
- W2737112091 hasPrimaryLocation W27371120911 @default.
- W2737112091 hasRelatedWork W1598207381 @default.
- W2737112091 hasRelatedWork W1987484445 @default.
- W2737112091 hasRelatedWork W2047139419 @default.
- W2737112091 hasRelatedWork W2165912799 @default.
- W2737112091 hasRelatedWork W2382615723 @default.
- W2737112091 hasRelatedWork W2735662278 @default.
- W2737112091 hasRelatedWork W2899084033 @default.
- W2737112091 hasRelatedWork W2952668426 @default.
- W2737112091 hasRelatedWork W4311804456 @default.
- W2737112091 hasRelatedWork W4386564352 @default.
- W2737112091 hasVolume "117" @default.