Matches in SemOpenAlex for { <https://semopenalex.org/work/W2737112604> ?p ?o ?g. }
- W2737112604 endingPage "286" @default.
- W2737112604 startingPage "271" @default.
- W2737112604 abstract "Stirling engine driven by solar energy for thermal to electricity conversion is one of the most promising solution of renewable technologies to reduce the dependency from fossil fuels. Unfortunately, the lack of data about the performance and some operational parameters of this technology limited its detailed characterization and sizing. This paper presents a modeling and simulation of a Dish Stirling system working with DIR receiver (Directly Illumined Receiver), to determine its energy production and efficiency, having Itajubá a city in MG/Brazil, as case of study. Mathematical model allows determine the influence of concentrator’s parameters on overall system efficiency. Opto-geometric and transfer processes, in concentrator-receiver system are modeled in detail, and this analysis is used to develop a thermal balance of the Dish Stirling system, to determine operation parameters like: operating temperature of receiver, receiver thermal heat losses, receiver efficiency, global thermal efficiency and electrical power generated by the system. Also procedure described in this article allows to develop a sensitivity analysis for some parameters as: solar irradiation, collector diameter, wind speed and tilt angle of the cavity. Multi-objective optimization based on NSGA-II algorithm has been employed to optimize the power and the efficiency of the system, by means of integration of Dish Stirling mathematical model in Modefrontier. Numerical results show that for low wind speed the radiation heat losses have more influence over system performance, representing 96.06% of total heat losses; when wind speed is greater than 8 m/s convection heat loss (45.27% of the total heat losses) becomes larger than emitted and reflected radiation. Pareto optimal front has been obtained for dual objective, and a final optimal solution has been selected using a decision-making approach by Simple Additive Weighting of decision variables (output electrical power and heat losses). Multi-objective optimization shows a way to obtain an output power of 11.1 kW, with an overall efficiency of 21%, with a significant decrease in heat loss, for the weather conditions of Itajubá-MG. Model gives consistent results confirmed by experimental data used in the validation, showing also that for regions with similar environmental condition like Itajubá, it is more interesting to improve the system material, reducing radiation heat losses." @default.
- W2737112604 created "2017-07-31" @default.
- W2737112604 creator A5011044391 @default.
- W2737112604 creator A5018836376 @default.
- W2737112604 creator A5026524453 @default.
- W2737112604 creator A5060207397 @default.
- W2737112604 creator A5070067415 @default.
- W2737112604 creator A5073340466 @default.
- W2737112604 creator A5074564490 @default.
- W2737112604 date "2017-10-01" @default.
- W2737112604 modified "2023-10-13" @default.
- W2737112604 title "Optimization of a Dish Stirling system working with DIR-type receiver using multi-objective techniques" @default.
- W2737112604 cites W1562465653 @default.
- W2737112604 cites W1964039429 @default.
- W2737112604 cites W1966062667 @default.
- W2737112604 cites W1966099889 @default.
- W2737112604 cites W1985584400 @default.
- W2737112604 cites W1989068126 @default.
- W2737112604 cites W1989359263 @default.
- W2737112604 cites W2004412525 @default.
- W2737112604 cites W2005354164 @default.
- W2737112604 cites W2011332590 @default.
- W2737112604 cites W2013593559 @default.
- W2737112604 cites W2023218622 @default.
- W2737112604 cites W2032444057 @default.
- W2737112604 cites W2037266179 @default.
- W2737112604 cites W2045716776 @default.
- W2737112604 cites W2061262489 @default.
- W2737112604 cites W2064116065 @default.
- W2737112604 cites W2158798005 @default.
- W2737112604 cites W2274879373 @default.
- W2737112604 cites W2290071949 @default.
- W2737112604 cites W2343370206 @default.
- W2737112604 cites W2416432156 @default.
- W2737112604 cites W2464283506 @default.
- W2737112604 cites W2516287861 @default.
- W2737112604 cites W2531624065 @default.
- W2737112604 cites W2540161127 @default.
- W2737112604 cites W2555209135 @default.
- W2737112604 cites W2569170976 @default.
- W2737112604 cites W2618327166 @default.
- W2737112604 cites W942472105 @default.
- W2737112604 doi "https://doi.org/10.1016/j.apenergy.2017.07.053" @default.
- W2737112604 hasPublicationYear "2017" @default.
- W2737112604 type Work @default.
- W2737112604 sameAs 2737112604 @default.
- W2737112604 citedByCount "48" @default.
- W2737112604 countsByYear W27371126042017 @default.
- W2737112604 countsByYear W27371126042018 @default.
- W2737112604 countsByYear W27371126042019 @default.
- W2737112604 countsByYear W27371126042020 @default.
- W2737112604 countsByYear W27371126042021 @default.
- W2737112604 countsByYear W27371126042022 @default.
- W2737112604 countsByYear W27371126042023 @default.
- W2737112604 crossrefType "journal-article" @default.
- W2737112604 hasAuthorship W2737112604A5011044391 @default.
- W2737112604 hasAuthorship W2737112604A5018836376 @default.
- W2737112604 hasAuthorship W2737112604A5026524453 @default.
- W2737112604 hasAuthorship W2737112604A5060207397 @default.
- W2737112604 hasAuthorship W2737112604A5070067415 @default.
- W2737112604 hasAuthorship W2737112604A5073340466 @default.
- W2737112604 hasAuthorship W2737112604A5074564490 @default.
- W2737112604 hasConcept C105923489 @default.
- W2737112604 hasConcept C119599485 @default.
- W2737112604 hasConcept C121332964 @default.
- W2737112604 hasConcept C127413603 @default.
- W2737112604 hasConcept C153294291 @default.
- W2737112604 hasConcept C15469602 @default.
- W2737112604 hasConcept C161067210 @default.
- W2737112604 hasConcept C171146098 @default.
- W2737112604 hasConcept C178790620 @default.
- W2737112604 hasConcept C183287310 @default.
- W2737112604 hasConcept C185592680 @default.
- W2737112604 hasConcept C188573790 @default.
- W2737112604 hasConcept C204530211 @default.
- W2737112604 hasConcept C21880701 @default.
- W2737112604 hasConcept C27134321 @default.
- W2737112604 hasConcept C2777767291 @default.
- W2737112604 hasConcept C2779473208 @default.
- W2737112604 hasConcept C50406533 @default.
- W2737112604 hasConcept C50517652 @default.
- W2737112604 hasConcept C57879066 @default.
- W2737112604 hasConcept C78519656 @default.
- W2737112604 hasConcept C97355855 @default.
- W2737112604 hasConceptScore W2737112604C105923489 @default.
- W2737112604 hasConceptScore W2737112604C119599485 @default.
- W2737112604 hasConceptScore W2737112604C121332964 @default.
- W2737112604 hasConceptScore W2737112604C127413603 @default.
- W2737112604 hasConceptScore W2737112604C153294291 @default.
- W2737112604 hasConceptScore W2737112604C15469602 @default.
- W2737112604 hasConceptScore W2737112604C161067210 @default.
- W2737112604 hasConceptScore W2737112604C171146098 @default.
- W2737112604 hasConceptScore W2737112604C178790620 @default.
- W2737112604 hasConceptScore W2737112604C183287310 @default.
- W2737112604 hasConceptScore W2737112604C185592680 @default.
- W2737112604 hasConceptScore W2737112604C188573790 @default.
- W2737112604 hasConceptScore W2737112604C204530211 @default.
- W2737112604 hasConceptScore W2737112604C21880701 @default.