Matches in SemOpenAlex for { <https://semopenalex.org/work/W2737121777> ?p ?o ?g. }
- W2737121777 abstract "Concentrated solar energy provides thermal energy that can be utilised for thermochemical conversion of biomass to produce liquid fuel and gases. This creates an efficient and a carbon-free process. The fast pyrolysis of biomass is an endothermic thermal process that occurs within 400-550oC at fast heating rates of >300 oC/second in the absence of oxygen. This temperature is within the range produced in a parabolic trough arrangement. The process of biomass gasification is the conversion of biomass fuels to non-condensable gases usually for chemical feedstock or as fuel using a fluidising medium. Solar intermittence is a major issue; this can be resolved by proposing a continuous process from concentrated solar energy to fuels or chemical feedstock. Computational fluid dynamics has proven to be a tool for design and optimisation of reactors. The Eulerian-Eulerian multiphase model using ANSYS Fluent has shown to be cost-effective at describing the characteristics of complex processes. The project entails using parabolic trough for fast pyrolysis of biomass; it is integrated with a gasification process with utilities produced entirely from solar energy. The scope of the project are: (i) A Computational fluid dynamic (CFD) model analysis of the novel reactor is to be developed to model biomass pyrolysis (ii) Investigate the potentials of integrating the proposed solar reactor with a conventional circulating fluidised bed (CFB) gasifier to create a highly efficient and sustainable closed loop thermo-solar process (iii) Validate the circulating fluidised bed model with an experimental scale Circulating fluidised bed (CFB) gasifier at Aston University’s European Bioenergy Research Institute. The report studied the use of CFD modelling to investigate fast pyrolysis of switch grass biomass using a solar parabolic trough receiver/reactor equipped with a novel gas-separation system. The separator controls the effect of tar-cracking reactions and achieves high separation efficiency compared to other gas-solid separation methods. The study assumes an average heat flux concentrated along the receiver/reactor. Pyrolysis reaction was represented as a single global first order Arrhenius type reaction with volatiles separated into condensable (bio-oil) and non-condensable products. The drying of moisture of the switch grass was represented as a mass transfer process. The separation efficiency achieved by the conical deflector was about 99%. The proposed reactor at the considered operating conditions can achieve overall energy efficiency of 42%; the product yield consist of 51.5% bio-oil, 43.7% char and 4.8% non-condensable gases. The average reactor temperature, gas residence time, and maximum devolatilisation efficiency were 450 °C, 1.5 s, and 60% respectively. There was good agreement in comparison with experimental findings from literature. A sensitivity analysis was conducted to study the effect of heat flux conditions, heat transfer, sweeping gas temperature, and particle size. The heat flux distribution showed that non-homogeneous provides a greater heating rate and temperature compared to the homogeneous flux. Radiation negligibly affects the final product composition; the radiation heats the biomass mainly rather than cause devolatilisation. The larger the biomass diameter the more bio-oil is produced, when a uniform particle temperature is assumed. An experimental study was conducted for the validation of the hydrodynamic model of a circulating fluidised bed. The experiment measured the pressure profiles and the solid recirculation rate. The experiment result showed that particle size has a negative correlation to the ease of fluidisation. High fluidising gas flowrate has a positive impact on the fluidising regime and pressure in the riser. The following parameters were compared with experimental results: grid size, turbulence model, drag laws, wall treatment, and wall shear properties (specularity coefficient and restitution coefficient). The results proved the optimum hydrodynamic model through comparison of pressure profiles of the model with experimental results. The gasification of char in a circulating fluidised was studied using the optimum hydrodynamic model validated from experiment. The model considered the effect of turbulence on the species evolution and tar reforming with char. Over the range of operating conditions, the results looked into the hydrodynamics and product yield of the gasifier. The product yields obtained for the base case was CO (12%), CO2 (19%), H2 (6%), CH4 (0.7%), and N2 (63%). The results proved that for smaller particles the evolution of species are dominated by kinetics. The catalytic effect of char showed improvement in tar yield and CGE to 15.12g/Nm3 and 67.74%. The product yields showed improvement with the compositions of CO2 and H2 due to reforming reactions. The yields and efficiency were in qualitative agreement with results from literature. The proposed models described will provide details on the procedures for future design of integrated solar biomass thermochemical conversion systems." @default.
- W2737121777 created "2017-07-31" @default.
- W2737121777 creator A5073402333 @default.
- W2737121777 date "2017-03-01" @default.
- W2737121777 modified "2023-09-23" @default.
- W2737121777 title "A novel approach for integrating concentrated solar energy with biomass thermochemical conversion processes" @default.
- W2737121777 cites W109487065 @default.
- W2737121777 cites W11019625 @default.
- W2737121777 cites W1486970133 @default.
- W2737121777 cites W14943598 @default.
- W2737121777 cites W150570421 @default.
- W2737121777 cites W1512530939 @default.
- W2737121777 cites W1564066642 @default.
- W2737121777 cites W1564817365 @default.
- W2737121777 cites W1566541140 @default.
- W2737121777 cites W1567639009 @default.
- W2737121777 cites W1574253948 @default.
- W2737121777 cites W1582189751 @default.
- W2737121777 cites W1592394761 @default.
- W2737121777 cites W180824322 @default.
- W2737121777 cites W1843213702 @default.
- W2737121777 cites W19432186 @default.
- W2737121777 cites W1964313543 @default.
- W2737121777 cites W1967110632 @default.
- W2737121777 cites W1968458466 @default.
- W2737121777 cites W1968506934 @default.
- W2737121777 cites W1968673742 @default.
- W2737121777 cites W1968685201 @default.
- W2737121777 cites W1970596579 @default.
- W2737121777 cites W1970677752 @default.
- W2737121777 cites W1971126770 @default.
- W2737121777 cites W1971332796 @default.
- W2737121777 cites W1972952644 @default.
- W2737121777 cites W1973598611 @default.
- W2737121777 cites W1975372243 @default.
- W2737121777 cites W1976442253 @default.
- W2737121777 cites W1978045435 @default.
- W2737121777 cites W1978158549 @default.
- W2737121777 cites W1978893684 @default.
- W2737121777 cites W1980121651 @default.
- W2737121777 cites W1980717337 @default.
- W2737121777 cites W1982014756 @default.
- W2737121777 cites W1982226527 @default.
- W2737121777 cites W1982301431 @default.
- W2737121777 cites W1984513392 @default.
- W2737121777 cites W1987679500 @default.
- W2737121777 cites W1987744570 @default.
- W2737121777 cites W1988867856 @default.
- W2737121777 cites W1989505740 @default.
- W2737121777 cites W1989722917 @default.
- W2737121777 cites W1991177164 @default.
- W2737121777 cites W1992079647 @default.
- W2737121777 cites W1992230474 @default.
- W2737121777 cites W1992273919 @default.
- W2737121777 cites W1993327679 @default.
- W2737121777 cites W1993477023 @default.
- W2737121777 cites W1993825511 @default.
- W2737121777 cites W1994425354 @default.
- W2737121777 cites W1994838654 @default.
- W2737121777 cites W1995653571 @default.
- W2737121777 cites W1996429766 @default.
- W2737121777 cites W1997949134 @default.
- W2737121777 cites W1997999011 @default.
- W2737121777 cites W1998277481 @default.
- W2737121777 cites W1999040567 @default.
- W2737121777 cites W1999474733 @default.
- W2737121777 cites W2000269750 @default.
- W2737121777 cites W2004449267 @default.
- W2737121777 cites W2005291355 @default.
- W2737121777 cites W2005376073 @default.
- W2737121777 cites W2006445838 @default.
- W2737121777 cites W2006736394 @default.
- W2737121777 cites W2006829469 @default.
- W2737121777 cites W2007322636 @default.
- W2737121777 cites W2007957866 @default.
- W2737121777 cites W2008624509 @default.
- W2737121777 cites W2008840505 @default.
- W2737121777 cites W2011172832 @default.
- W2737121777 cites W2012802175 @default.
- W2737121777 cites W2013163699 @default.
- W2737121777 cites W2013228729 @default.
- W2737121777 cites W2013520045 @default.
- W2737121777 cites W2014147061 @default.
- W2737121777 cites W2015372248 @default.
- W2737121777 cites W2016594151 @default.
- W2737121777 cites W2016881727 @default.
- W2737121777 cites W2017128431 @default.
- W2737121777 cites W2017506456 @default.
- W2737121777 cites W2020030729 @default.
- W2737121777 cites W2021118991 @default.
- W2737121777 cites W2022063262 @default.
- W2737121777 cites W2022706619 @default.
- W2737121777 cites W2023332540 @default.
- W2737121777 cites W2023663087 @default.
- W2737121777 cites W2023685738 @default.
- W2737121777 cites W2023777236 @default.
- W2737121777 cites W2024087685 @default.
- W2737121777 cites W2024095954 @default.
- W2737121777 cites W2024684847 @default.
- W2737121777 cites W2025422390 @default.