Matches in SemOpenAlex for { <https://semopenalex.org/work/W2737286931> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2737286931 abstract "Ground Penetrating Radar or generally known as GPR is an important and popular method in subsurface imaging due to its non-destructive nature. GPR data interpretation requires expertise from human operator which is a time consuming and costly task as the data amount can be enormously large. In this study, a framework that pairs up Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM) is proposed to detect subsurface targets in GPR data automatically. HOG feature descriptors are extracted by characterizing the target appearance and shape from hyperbolic signatures that appear in GPR images. Extracted feature descriptors are then sent to SVM for classification. Contribution of this research includes designing the best SVM classifier model by considering the best kernel and its optimized parameter settings. The proposed algorithm is compared to the most commonly used approach (Hough Transform) to evaluate its performance. In this research, the data sets consist of images that are collected using different GPR system models. Despite having limited sample images for training, the proposed method managed to detect hyperbolic signatures in GPR images. SVM classifier with probabilistic estimation model shows better performance for its flexibility in decision making using confidence level while SVM without probabilistic estimation model shows high false positive rate of more than 50%. Moreover, results from the experiments have also shown that the proposed method is able to produce higher detection rate with a much lower false positive rate than that of Hough Transform. The accuracy of target detection using the proposed method records an average detection rate of 89.40% and 7.38% of false positive rate for all the data sets used in this research. Apart from the improved performance, the proposed method also offers flexibility to control detection tasks through an adjustment on the probabilistic estimation model." @default.
- W2737286931 created "2017-07-31" @default.
- W2737286931 creator A5050041274 @default.
- W2737286931 date "2016-01-01" @default.
- W2737286931 modified "2023-09-26" @default.
- W2737286931 title "Classification of ground penetrating radar images using histogram of oriented gradients and support vector mechine" @default.
- W2737286931 hasPublicationYear "2016" @default.
- W2737286931 type Work @default.
- W2737286931 sameAs 2737286931 @default.
- W2737286931 citedByCount "0" @default.
- W2737286931 crossrefType "dissertation" @default.
- W2737286931 hasAuthorship W2737286931A5050041274 @default.
- W2737286931 hasConcept C115961682 @default.
- W2737286931 hasConcept C12267149 @default.
- W2737286931 hasConcept C138885662 @default.
- W2737286931 hasConcept C153180895 @default.
- W2737286931 hasConcept C154945302 @default.
- W2737286931 hasConcept C17426736 @default.
- W2737286931 hasConcept C200518788 @default.
- W2737286931 hasConcept C2776401178 @default.
- W2737286931 hasConcept C41008148 @default.
- W2737286931 hasConcept C41895202 @default.
- W2737286931 hasConcept C49937458 @default.
- W2737286931 hasConcept C52622490 @default.
- W2737286931 hasConcept C53533937 @default.
- W2737286931 hasConcept C554190296 @default.
- W2737286931 hasConcept C71813955 @default.
- W2737286931 hasConcept C76155785 @default.
- W2737286931 hasConcept C83665646 @default.
- W2737286931 hasConcept C95623464 @default.
- W2737286931 hasConceptScore W2737286931C115961682 @default.
- W2737286931 hasConceptScore W2737286931C12267149 @default.
- W2737286931 hasConceptScore W2737286931C138885662 @default.
- W2737286931 hasConceptScore W2737286931C153180895 @default.
- W2737286931 hasConceptScore W2737286931C154945302 @default.
- W2737286931 hasConceptScore W2737286931C17426736 @default.
- W2737286931 hasConceptScore W2737286931C200518788 @default.
- W2737286931 hasConceptScore W2737286931C2776401178 @default.
- W2737286931 hasConceptScore W2737286931C41008148 @default.
- W2737286931 hasConceptScore W2737286931C41895202 @default.
- W2737286931 hasConceptScore W2737286931C49937458 @default.
- W2737286931 hasConceptScore W2737286931C52622490 @default.
- W2737286931 hasConceptScore W2737286931C53533937 @default.
- W2737286931 hasConceptScore W2737286931C554190296 @default.
- W2737286931 hasConceptScore W2737286931C71813955 @default.
- W2737286931 hasConceptScore W2737286931C76155785 @default.
- W2737286931 hasConceptScore W2737286931C83665646 @default.
- W2737286931 hasConceptScore W2737286931C95623464 @default.
- W2737286931 hasLocation W27372869311 @default.
- W2737286931 hasOpenAccess W2737286931 @default.
- W2737286931 hasPrimaryLocation W27372869311 @default.
- W2737286931 hasRelatedWork W1968573840 @default.
- W2737286931 hasRelatedWork W1999806226 @default.
- W2737286931 hasRelatedWork W2047409340 @default.
- W2737286931 hasRelatedWork W2185038973 @default.
- W2737286931 hasRelatedWork W2186608291 @default.
- W2737286931 hasRelatedWork W2353551443 @default.
- W2737286931 hasRelatedWork W2359161794 @default.
- W2737286931 hasRelatedWork W2362775447 @default.
- W2737286931 hasRelatedWork W2368143762 @default.
- W2737286931 hasRelatedWork W2569947358 @default.
- W2737286931 hasRelatedWork W2738322862 @default.
- W2737286931 hasRelatedWork W2773964117 @default.
- W2737286931 hasRelatedWork W2780125576 @default.
- W2737286931 hasRelatedWork W2809544832 @default.
- W2737286931 hasRelatedWork W2856780004 @default.
- W2737286931 hasRelatedWork W2970514189 @default.
- W2737286931 hasRelatedWork W3004377704 @default.
- W2737286931 hasRelatedWork W3126364489 @default.
- W2737286931 hasRelatedWork W3189624688 @default.
- W2737286931 hasRelatedWork W2183105726 @default.
- W2737286931 isParatext "false" @default.
- W2737286931 isRetracted "false" @default.
- W2737286931 magId "2737286931" @default.
- W2737286931 workType "dissertation" @default.