Matches in SemOpenAlex for { <https://semopenalex.org/work/W2737480027> ?p ?o ?g. }
- W2737480027 endingPage "3792" @default.
- W2737480027 startingPage "3784" @default.
- W2737480027 abstract "Abstract Motivation In recent years, there has been great progress in the field of automated curation of biomedical networks and models, aided by text mining methods that provide evidence from literature. Such methods must not only extract snippets of text that relate to model interactions, but also be able to contextualize the evidence and provide additional confidence scores for the interaction in question. Although various approaches calculating confidence scores have focused primarily on the quality of the extracted information, there has been little work on exploring the textual uncertainty conveyed by the author. Despite textual uncertainty being acknowledged in biomedical text mining as an attribute of text mined interactions (events), it is significantly understudied as a means of providing a confidence measure for interactions in pathways or other biomedical models. In this work, we focus on improving identification of textual uncertainty for events and explore how it can be used as an additional measure of confidence for biomedical models. Results We present a novel method for extracting uncertainty from the literature using a hybrid approach that combines rule induction and machine learning. Variations of this hybrid approach are then discussed, alongside their advantages and disadvantages. We use subjective logic theory to combine multiple uncertainty values extracted from different sources for the same interaction. Our approach achieves F-scores of 0.76 and 0.88 based on the BioNLP-ST and Genia-MK corpora, respectively, making considerable improvements over previously published work. Moreover, we evaluate our proposed system on pathways related to two different areas, namely leukemia and melanoma cancer research. Availability and implementation The leukemia pathway model used is available in Pathway Studio while the Ras model is available via PathwayCommons. Online demonstration of the uncertainty extraction system is available for research purposes at http://argo.nactem.ac.uk/test. The related code is available on https://github.com/c-zrv/uncertainty_components.git. Details on the above are available in the Supplementary Material. Supplementary information Supplementary data are available at Bioinformatics online." @default.
- W2737480027 created "2017-07-31" @default.
- W2737480027 creator A5004372721 @default.
- W2737480027 creator A5050960711 @default.
- W2737480027 creator A5054081363 @default.
- W2737480027 creator A5077976343 @default.
- W2737480027 date "2017-07-24" @default.
- W2737480027 modified "2023-10-18" @default.
- W2737480027 title "Using uncertainty to link and rank evidence from biomedical literature for model curation" @default.
- W2737480027 cites W1024674079 @default.
- W2737480027 cites W121201412 @default.
- W2737480027 cites W1935064633 @default.
- W2737480027 cites W1982464493 @default.
- W2737480027 cites W1993755899 @default.
- W2737480027 cites W1998212996 @default.
- W2737480027 cites W2006016176 @default.
- W2737480027 cites W2006587457 @default.
- W2737480027 cites W2011340259 @default.
- W2737480027 cites W2031966872 @default.
- W2737480027 cites W2032021697 @default.
- W2737480027 cites W2051547811 @default.
- W2737480027 cites W2057545775 @default.
- W2737480027 cites W2061327015 @default.
- W2737480027 cites W2065807795 @default.
- W2737480027 cites W2080182143 @default.
- W2737480027 cites W2085809930 @default.
- W2737480027 cites W2098407161 @default.
- W2737480027 cites W2098722636 @default.
- W2737480027 cites W2100276951 @default.
- W2737480027 cites W2101819947 @default.
- W2737480027 cites W2103320915 @default.
- W2737480027 cites W2104736058 @default.
- W2737480027 cites W2105440823 @default.
- W2737480027 cites W2110689325 @default.
- W2737480027 cites W2113465510 @default.
- W2737480027 cites W2114348990 @default.
- W2737480027 cites W2120850582 @default.
- W2737480027 cites W2126469373 @default.
- W2737480027 cites W2129592938 @default.
- W2737480027 cites W2139259976 @default.
- W2737480027 cites W2153490111 @default.
- W2737480027 cites W2155690268 @default.
- W2737480027 cites W2156930958 @default.
- W2737480027 cites W2163107094 @default.
- W2737480027 cites W2273647512 @default.
- W2737480027 cites W2332614485 @default.
- W2737480027 cites W2346229725 @default.
- W2737480027 cites W4253336088 @default.
- W2737480027 doi "https://doi.org/10.1093/bioinformatics/btx466" @default.
- W2737480027 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5860317" @default.
- W2737480027 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29036627" @default.
- W2737480027 hasPublicationYear "2017" @default.
- W2737480027 type Work @default.
- W2737480027 sameAs 2737480027 @default.
- W2737480027 citedByCount "25" @default.
- W2737480027 countsByYear W27374800272017 @default.
- W2737480027 countsByYear W27374800272018 @default.
- W2737480027 countsByYear W27374800272019 @default.
- W2737480027 countsByYear W27374800272020 @default.
- W2737480027 countsByYear W27374800272021 @default.
- W2737480027 countsByYear W27374800272022 @default.
- W2737480027 countsByYear W27374800272023 @default.
- W2737480027 crossrefType "journal-article" @default.
- W2737480027 hasAuthorship W2737480027A5004372721 @default.
- W2737480027 hasAuthorship W2737480027A5050960711 @default.
- W2737480027 hasAuthorship W2737480027A5054081363 @default.
- W2737480027 hasAuthorship W2737480027A5077976343 @default.
- W2737480027 hasBestOaLocation W27374800271 @default.
- W2737480027 hasConcept C114614502 @default.
- W2737480027 hasConcept C116834253 @default.
- W2737480027 hasConcept C119857082 @default.
- W2737480027 hasConcept C124101348 @default.
- W2737480027 hasConcept C154945302 @default.
- W2737480027 hasConcept C164226766 @default.
- W2737480027 hasConcept C165141518 @default.
- W2737480027 hasConcept C202444582 @default.
- W2737480027 hasConcept C23123220 @default.
- W2737480027 hasConcept C2522767166 @default.
- W2737480027 hasConcept C2780009758 @default.
- W2737480027 hasConcept C33923547 @default.
- W2737480027 hasConcept C41008148 @default.
- W2737480027 hasConcept C59822182 @default.
- W2737480027 hasConcept C71472368 @default.
- W2737480027 hasConcept C86803240 @default.
- W2737480027 hasConcept C9652623 @default.
- W2737480027 hasConceptScore W2737480027C114614502 @default.
- W2737480027 hasConceptScore W2737480027C116834253 @default.
- W2737480027 hasConceptScore W2737480027C119857082 @default.
- W2737480027 hasConceptScore W2737480027C124101348 @default.
- W2737480027 hasConceptScore W2737480027C154945302 @default.
- W2737480027 hasConceptScore W2737480027C164226766 @default.
- W2737480027 hasConceptScore W2737480027C165141518 @default.
- W2737480027 hasConceptScore W2737480027C202444582 @default.
- W2737480027 hasConceptScore W2737480027C23123220 @default.
- W2737480027 hasConceptScore W2737480027C2522767166 @default.
- W2737480027 hasConceptScore W2737480027C2780009758 @default.
- W2737480027 hasConceptScore W2737480027C33923547 @default.
- W2737480027 hasConceptScore W2737480027C41008148 @default.