Matches in SemOpenAlex for { <https://semopenalex.org/work/W2738024116> ?p ?o ?g. }
- W2738024116 endingPage "1955" @default.
- W2738024116 startingPage "1946" @default.
- W2738024116 abstract "ConspectusThe spontaneous assembly of uniform-sized globular entities into ordered arrays is a universal phenomenon observed for objects with diameters spanning a broad range of length scales. These extend from the atomic scale (10–8 cm), through molecular and macromolecular scales with proteins, synthetic low polymers, and colloidal crystals (∼10–6 cm), to the wavelength of visible light (∼10–5 cm). The associated concepts of sphere packing have had an influence in diverse fields ranging from pure geometrical analysis to architectural models or ideals. Self-assembly of atoms, supramolecules, or nanocrystals into ordered functional superstructures is a universal process and prevalent topic in science.About five billion years ago in the early solar system, highly uniform magnetite particles of a few hundred nanometers in size were assembled in 3D arrays.1 Thirty million years ago, silicate particles with submicrometer size were self-organized in the form of opal.2 Opal is colorless when composed of disordered silicate microparticles whereas it shows specific reflectivity when particles order in arrays. Nowadays, nanocrystals, characterized by a narrow size distribution and coated with alkyl chains to maintain their integrity, self-assemble to form crystallographic orders called supracrystals. Nanocrystals and supracrystals are arrangements of highly ordered atoms and nanocrystals, respectively. The morphologies of nanocrystals, supracrystals, and minerals are similar at various scales from nanometer to millimeter scale.3,4 Such suprastructures, which enable the design of novel materials, are expected to become one of the main driving forces in material research for the 21st century.5,6Nanocrystals vibrate coherently in a supracrystal as atoms in a nanocrystal. Longitudinal acoustic phonons are detected in supracrystals as with atomic crystals, where longitudinal acoustic phonons propagate through coherent movements of atoms of the lattice out of their equilibrium positions. These vibrational properties show a full analogy with atomic crystals: In supracrystals, atoms are replaced by (uncompressible) nanocrystals and atomic bonds by coating agents (carbon chains), which act like mechanical springs holding together the nanocrystals. Electronic properties of very thick (more than a few micrometers) supracrystals reveal homogeneous conductance with the fingerprint of the isolated nanocrystal. Triangular single crystals formed by heat-induced (50 °C) coalescence of thin supracrystals deposited on a substrate as epitaxial growth of metal particles on a substrate with specific orientation produced by ultrahigh vacuum (UHV).Here we demonstrate that marked changes can occur in the chemical and physical properties of nanocrystals differing by their nanocrystallinity, that is, their crystalline structure. Furthermore, the properties (mechanical, growth processes) of supracrystals also change with the nanocrystallinity of the nanoparticles used as building blocks." @default.
- W2738024116 created "2017-07-31" @default.
- W2738024116 creator A5023708145 @default.
- W2738024116 date "2017-07-20" @default.
- W2738024116 modified "2023-10-03" @default.
- W2738024116 title "Impact of the Metallic Crystalline Structure on the Properties of Nanocrystals and Their Mesoscopic Assemblies" @default.
- W2738024116 cites W1266868390 @default.
- W2738024116 cites W1965187284 @default.
- W2738024116 cites W1967790580 @default.
- W2738024116 cites W1970673016 @default.
- W2738024116 cites W1982159443 @default.
- W2738024116 cites W1995170243 @default.
- W2738024116 cites W2001275660 @default.
- W2738024116 cites W2003687357 @default.
- W2738024116 cites W2010064642 @default.
- W2738024116 cites W2014732681 @default.
- W2738024116 cites W2018155757 @default.
- W2738024116 cites W2021391675 @default.
- W2738024116 cites W2031225747 @default.
- W2738024116 cites W2038237598 @default.
- W2738024116 cites W2051166244 @default.
- W2738024116 cites W2054070416 @default.
- W2738024116 cites W2057468740 @default.
- W2738024116 cites W2059070215 @default.
- W2738024116 cites W2060478301 @default.
- W2738024116 cites W2063081960 @default.
- W2738024116 cites W2064864432 @default.
- W2738024116 cites W2069873749 @default.
- W2738024116 cites W2075152699 @default.
- W2738024116 cites W2076790869 @default.
- W2738024116 cites W2087057538 @default.
- W2738024116 cites W2088625022 @default.
- W2738024116 cites W2089002247 @default.
- W2738024116 cites W2092174469 @default.
- W2738024116 cites W2094908861 @default.
- W2738024116 cites W2101326740 @default.
- W2738024116 cites W2104352698 @default.
- W2738024116 cites W2124813645 @default.
- W2738024116 cites W2131601820 @default.
- W2738024116 cites W2135426122 @default.
- W2738024116 cites W2162035218 @default.
- W2738024116 cites W2168892407 @default.
- W2738024116 cites W2192609017 @default.
- W2738024116 cites W2316045189 @default.
- W2738024116 cites W2316968996 @default.
- W2738024116 cites W2317085514 @default.
- W2738024116 cites W2318011563 @default.
- W2738024116 cites W2322476450 @default.
- W2738024116 cites W2322797970 @default.
- W2738024116 cites W2324854149 @default.
- W2738024116 cites W2325755055 @default.
- W2738024116 cites W2326647087 @default.
- W2738024116 cites W2330004959 @default.
- W2738024116 cites W2334445687 @default.
- W2738024116 cites W2431769041 @default.
- W2738024116 cites W2512441039 @default.
- W2738024116 cites W2557934778 @default.
- W2738024116 cites W3021854984 @default.
- W2738024116 doi "https://doi.org/10.1021/acs.accounts.7b00093" @default.
- W2738024116 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28726381" @default.
- W2738024116 hasPublicationYear "2017" @default.
- W2738024116 type Work @default.
- W2738024116 sameAs 2738024116 @default.
- W2738024116 citedByCount "24" @default.
- W2738024116 countsByYear W27380241162017 @default.
- W2738024116 countsByYear W27380241162018 @default.
- W2738024116 countsByYear W27380241162019 @default.
- W2738024116 countsByYear W27380241162020 @default.
- W2738024116 countsByYear W27380241162021 @default.
- W2738024116 countsByYear W27380241162022 @default.
- W2738024116 countsByYear W27380241162023 @default.
- W2738024116 crossrefType "journal-article" @default.
- W2738024116 hasAuthorship W2738024116A5023708145 @default.
- W2738024116 hasConcept C121332964 @default.
- W2738024116 hasConcept C127413603 @default.
- W2738024116 hasConcept C155672457 @default.
- W2738024116 hasConcept C159467904 @default.
- W2738024116 hasConcept C159985019 @default.
- W2738024116 hasConcept C171250308 @default.
- W2738024116 hasConcept C175854130 @default.
- W2738024116 hasConcept C177731217 @default.
- W2738024116 hasConcept C185592680 @default.
- W2738024116 hasConcept C192562407 @default.
- W2738024116 hasConcept C26856880 @default.
- W2738024116 hasConcept C26873012 @default.
- W2738024116 hasConcept C2777335606 @default.
- W2738024116 hasConcept C42360764 @default.
- W2738024116 hasConcept C45206210 @default.
- W2738024116 hasConcept C521977710 @default.
- W2738024116 hasConcept C77066764 @default.
- W2738024116 hasConceptScore W2738024116C121332964 @default.
- W2738024116 hasConceptScore W2738024116C127413603 @default.
- W2738024116 hasConceptScore W2738024116C155672457 @default.
- W2738024116 hasConceptScore W2738024116C159467904 @default.
- W2738024116 hasConceptScore W2738024116C159985019 @default.
- W2738024116 hasConceptScore W2738024116C171250308 @default.
- W2738024116 hasConceptScore W2738024116C175854130 @default.
- W2738024116 hasConceptScore W2738024116C177731217 @default.