Matches in SemOpenAlex for { <https://semopenalex.org/work/W2738215248> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2738215248 abstract "In this paper, we present theoretical results on the statistical properties of stationary, homogeneous and isotropic turbulence in incompressible flows in three dimensions. Within the framework of the Non-Perturbative Renormalization Group, we derive a closed renormalization flow equation for a generic $n$-point correlation (and response) function for large wave-numbers with respect to the inverse integral scale. The closure is obtained from a controlled expansion and relies on extended symmetries of the Navier-Stokes field theory. It yields the exact leading behavior of the flow equation at large wave-numbers $|vec p_i|$, and for arbitrary time differences $t_i$ in the stationary state. Furthermore, we obtain the form of the general solution of the corresponding fixed point equation, which yields the analytical form of the leading wave-number and time dependence of $n$-point correlation functions, for large wave-numbers and both for small $t_i$ and in the limit $t_ito infty$. At small $t_i$, the leading contribution at large wave-number is logarithmically equivalent to $-alpha (epsilon L)^{2/3}|sum t_i vec p_i|^2$, where $alpha$ is a nonuniversal constant, $L$ the integral scale and $varepsilon$ the mean energy injection rate. For the 2-point function, the $(t p)^2$ dependence is known to originate from the sweeping effect. The derived formula embodies the generalization of the effect of sweeping to $n-$point correlation functions. At large wave-number and large $t_i$, we show that the $t_i^2$ dependence in the leading order contribution crosses over to a $|t_i|$ dependence. The expression of the correlation functions in this regime was not derived before, even for the 2-point function. Both predictions can be tested in direct numerical simulations and in experiments." @default.
- W2738215248 created "2017-07-31" @default.
- W2738215248 creator A5009316371 @default.
- W2738215248 creator A5018868285 @default.
- W2738215248 creator A5090172534 @default.
- W2738215248 date "2017-07-21" @default.
- W2738215248 modified "2023-10-02" @default.
- W2738215248 title "Correlation functions in fully developed turbulence" @default.
- W2738215248 hasPublicationYear "2017" @default.
- W2738215248 type Work @default.
- W2738215248 sameAs 2738215248 @default.
- W2738215248 citedByCount "0" @default.
- W2738215248 crossrefType "posted-content" @default.
- W2738215248 hasAuthorship W2738215248A5009316371 @default.
- W2738215248 hasAuthorship W2738215248A5018868285 @default.
- W2738215248 hasAuthorship W2738215248A5090172534 @default.
- W2738215248 hasConcept C121130766 @default.
- W2738215248 hasConcept C121332964 @default.
- W2738215248 hasConcept C133386390 @default.
- W2738215248 hasConcept C134306372 @default.
- W2738215248 hasConcept C14036430 @default.
- W2738215248 hasConcept C196558001 @default.
- W2738215248 hasConcept C33923547 @default.
- W2738215248 hasConcept C37914503 @default.
- W2738215248 hasConcept C38349280 @default.
- W2738215248 hasConcept C53622274 @default.
- W2738215248 hasConcept C57879066 @default.
- W2738215248 hasConcept C62520636 @default.
- W2738215248 hasConcept C68532491 @default.
- W2738215248 hasConcept C78458016 @default.
- W2738215248 hasConcept C86803240 @default.
- W2738215248 hasConcept C97355855 @default.
- W2738215248 hasConceptScore W2738215248C121130766 @default.
- W2738215248 hasConceptScore W2738215248C121332964 @default.
- W2738215248 hasConceptScore W2738215248C133386390 @default.
- W2738215248 hasConceptScore W2738215248C134306372 @default.
- W2738215248 hasConceptScore W2738215248C14036430 @default.
- W2738215248 hasConceptScore W2738215248C196558001 @default.
- W2738215248 hasConceptScore W2738215248C33923547 @default.
- W2738215248 hasConceptScore W2738215248C37914503 @default.
- W2738215248 hasConceptScore W2738215248C38349280 @default.
- W2738215248 hasConceptScore W2738215248C53622274 @default.
- W2738215248 hasConceptScore W2738215248C57879066 @default.
- W2738215248 hasConceptScore W2738215248C62520636 @default.
- W2738215248 hasConceptScore W2738215248C68532491 @default.
- W2738215248 hasConceptScore W2738215248C78458016 @default.
- W2738215248 hasConceptScore W2738215248C86803240 @default.
- W2738215248 hasConceptScore W2738215248C97355855 @default.
- W2738215248 hasLocation W27382152481 @default.
- W2738215248 hasOpenAccess W2738215248 @default.
- W2738215248 hasPrimaryLocation W27382152481 @default.
- W2738215248 hasRelatedWork W1989774396 @default.
- W2738215248 hasRelatedWork W2003131377 @default.
- W2738215248 hasRelatedWork W2013885153 @default.
- W2738215248 hasRelatedWork W2059768104 @default.
- W2738215248 hasRelatedWork W2061922320 @default.
- W2738215248 hasRelatedWork W2079890361 @default.
- W2738215248 hasRelatedWork W2086890075 @default.
- W2738215248 hasRelatedWork W2089014299 @default.
- W2738215248 hasRelatedWork W2092532181 @default.
- W2738215248 hasRelatedWork W2093602549 @default.
- W2738215248 hasRelatedWork W2119139663 @default.
- W2738215248 hasRelatedWork W2163915735 @default.
- W2738215248 hasRelatedWork W2651892035 @default.
- W2738215248 hasRelatedWork W2800571874 @default.
- W2738215248 hasRelatedWork W2950289085 @default.
- W2738215248 hasRelatedWork W3008234435 @default.
- W2738215248 hasRelatedWork W3099672555 @default.
- W2738215248 hasRelatedWork W3103970218 @default.
- W2738215248 hasRelatedWork W3104012573 @default.
- W2738215248 hasRelatedWork W3104051625 @default.
- W2738215248 isParatext "false" @default.
- W2738215248 isRetracted "false" @default.
- W2738215248 magId "2738215248" @default.
- W2738215248 workType "article" @default.