Matches in SemOpenAlex for { <https://semopenalex.org/work/W2738252183> ?p ?o ?g. }
- W2738252183 endingPage "20" @default.
- W2738252183 startingPage "12" @default.
- W2738252183 abstract "The use of active remote sensing techniques based on light detection and ranging (LiDAR) was investigated here to estimate the green area index (GAI) of wheat crops. Emphasis was put on the maximum GAI development stage when saturation effects are known to limit the performances of standard indirect methods based either on the gap fraction or reflectance measurements. The LiDAR provides both the three dimensional (3D) point cloud from which the vertical distribution (Z profile) of the interception points is computed, as well as the intensity of the returned signal from which the green fraction (GF) is derived. The data were interpreted by exploiting the 3D ADEL-Wheat model that synthesizes the knowledge accumulated on wheat canopy structure. A LiDAR simulator that accounts for the specific observation configuration used was developed to mimic the actual LiDAR measurements. The in-silico experiments were conducted to generate training and validation dataset. Neural network were then used to estimate GAI from the Z profile and GF derived from the LiDAR measurements. Performances of GAI estimates by the several methods investigated were evaluated using either experimental data with 3 < GAI < 6 and data simulated with the 3D structure model with 1 < GAI < 7. Results confirm that using only the GF provides poor estimates of GAI (0.89 < RMSE < 1.28; 0.22 < rRMSE < 0.31), regardless of turbid medium or realistic assumptions on canopy 3D structure. The introduction of the Z profile information improved significantly the GAI estimation accuracy (0.48 < RMSE < 0.55; 0.12 < rRMSE < 0.13). This study demonstrates the interest of using the third dimension provided by LiDAR to better estimate GAI in crops under high GAI values. However, this requires the use of a realistic 3D structure crop model over which the LiDAR data could be simulated under the observational configuration used." @default.
- W2738252183 created "2017-07-31" @default.
- W2738252183 creator A5004969586 @default.
- W2738252183 creator A5016685265 @default.
- W2738252183 creator A5026000178 @default.
- W2738252183 creator A5037422401 @default.
- W2738252183 creator A5038477694 @default.
- W2738252183 creator A5039952643 @default.
- W2738252183 creator A5040788606 @default.
- W2738252183 creator A5045314681 @default.
- W2738252183 creator A5056869363 @default.
- W2738252183 creator A5081593260 @default.
- W2738252183 creator A5086352934 @default.
- W2738252183 date "2017-12-01" @default.
- W2738252183 modified "2023-10-13" @default.
- W2738252183 title "Estimating wheat green area index from ground-based LiDAR measurement using a 3D canopy structure model" @default.
- W2738252183 cites W196321102 @default.
- W2738252183 cites W1969939898 @default.
- W2738252183 cites W1972524489 @default.
- W2738252183 cites W1974479281 @default.
- W2738252183 cites W1977428739 @default.
- W2738252183 cites W1980140622 @default.
- W2738252183 cites W1995103915 @default.
- W2738252183 cites W2010062112 @default.
- W2738252183 cites W2014091167 @default.
- W2738252183 cites W2025226910 @default.
- W2738252183 cites W2030078894 @default.
- W2738252183 cites W2041684917 @default.
- W2738252183 cites W2046918677 @default.
- W2738252183 cites W2060176133 @default.
- W2738252183 cites W2062021861 @default.
- W2738252183 cites W2067877300 @default.
- W2738252183 cites W2071454092 @default.
- W2738252183 cites W2081889060 @default.
- W2738252183 cites W2083053342 @default.
- W2738252183 cites W2086783159 @default.
- W2738252183 cites W2094420085 @default.
- W2738252183 cites W2095380991 @default.
- W2738252183 cites W2102228204 @default.
- W2738252183 cites W2113488626 @default.
- W2738252183 cites W2119150010 @default.
- W2738252183 cites W2122000245 @default.
- W2738252183 cites W2123574709 @default.
- W2738252183 cites W2127354426 @default.
- W2738252183 cites W2148293865 @default.
- W2738252183 cites W2148719805 @default.
- W2738252183 cites W2148889807 @default.
- W2738252183 cites W2165296207 @default.
- W2738252183 cites W2167248655 @default.
- W2738252183 cites W2188563027 @default.
- W2738252183 cites W2194745211 @default.
- W2738252183 cites W2273297058 @default.
- W2738252183 cites W2275441316 @default.
- W2738252183 cites W2603073444 @default.
- W2738252183 cites W827697230 @default.
- W2738252183 doi "https://doi.org/10.1016/j.agrformet.2017.07.007" @default.
- W2738252183 hasPublicationYear "2017" @default.
- W2738252183 type Work @default.
- W2738252183 sameAs 2738252183 @default.
- W2738252183 citedByCount "47" @default.
- W2738252183 countsByYear W27382521832017 @default.
- W2738252183 countsByYear W27382521832018 @default.
- W2738252183 countsByYear W27382521832019 @default.
- W2738252183 countsByYear W27382521832020 @default.
- W2738252183 countsByYear W27382521832021 @default.
- W2738252183 countsByYear W27382521832022 @default.
- W2738252183 countsByYear W27382521832023 @default.
- W2738252183 crossrefType "journal-article" @default.
- W2738252183 hasAuthorship W2738252183A5004969586 @default.
- W2738252183 hasAuthorship W2738252183A5016685265 @default.
- W2738252183 hasAuthorship W2738252183A5026000178 @default.
- W2738252183 hasAuthorship W2738252183A5037422401 @default.
- W2738252183 hasAuthorship W2738252183A5038477694 @default.
- W2738252183 hasAuthorship W2738252183A5039952643 @default.
- W2738252183 hasAuthorship W2738252183A5040788606 @default.
- W2738252183 hasAuthorship W2738252183A5045314681 @default.
- W2738252183 hasAuthorship W2738252183A5056869363 @default.
- W2738252183 hasAuthorship W2738252183A5081593260 @default.
- W2738252183 hasAuthorship W2738252183A5086352934 @default.
- W2738252183 hasConcept C101000010 @default.
- W2738252183 hasConcept C105795698 @default.
- W2738252183 hasConcept C115051666 @default.
- W2738252183 hasConcept C131979681 @default.
- W2738252183 hasConcept C13280743 @default.
- W2738252183 hasConcept C139945424 @default.
- W2738252183 hasConcept C154945302 @default.
- W2738252183 hasConcept C166957645 @default.
- W2738252183 hasConcept C18903297 @default.
- W2738252183 hasConcept C205649164 @default.
- W2738252183 hasConcept C25989453 @default.
- W2738252183 hasConcept C33923547 @default.
- W2738252183 hasConcept C39432304 @default.
- W2738252183 hasConcept C41008148 @default.
- W2738252183 hasConcept C51399673 @default.
- W2738252183 hasConcept C61270487 @default.
- W2738252183 hasConcept C62649853 @default.
- W2738252183 hasConcept C6557445 @default.
- W2738252183 hasConcept C86803240 @default.