Matches in SemOpenAlex for { <https://semopenalex.org/work/W2738402803> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2738402803 abstract "Master the art of digital forensics and analysis with PythonAbout This BookLearn to perform forensic analysis and investigations with the help of Python, and gain an advanced understanding of the various Python libraries and frameworksAnalyze Python scripts to extract metadata and investigate forensic artifactsThe writers, Dr. Michael Spreitzenbarth and Dr. Johann Uhrmann, have used their experience to craft this hands-on guide to using Python for forensic analysis and investigationsWho This Book Is ForIf you are a network security professional or forensics analyst who wants to gain a deeper understanding of performing forensic analysis with Python, then this book is for you. Some Python experience would be helpful.What You Will LearnExplore the forensic analysis of different platforms such as Windows, Android, and vSphereSemi-automatically reconstruct major parts of the system activity and time-lineLeverage Python ctypes for protocol decodingExamine artifacts from mobile, Skype, and browsersDiscover how to utilize Python to improve the focus of your analysisInvestigate in volatile memory with the help of volatility on the Android and Linux platformsIn DetailDigital forensic analysis is the process of examining and extracting data digitally and examining it. Python has the combination of power, expressiveness, and ease of use that makes it an essential complementary tool to the traditional, off-the-shelf digital forensic tools.This book will teach you how to perform forensic analysis and investigations by exploring the capabilities of various Python libraries.The book starts by explaining the building blocks of the Python programming language, especially ctypes in-depth, along with how to automate typical tasks in file system analysis, common correlation tasks to discover anomalies, as well as templates for investigations. Next, we'll show you cryptographic algorithms that can be used during forensic investigations to check for known files or to compare suspicious files with online services such as VirusTotal or Mobile-Sandbox.Moving on, you'll learn how to sniff on the network, generate and analyze network flows, and perform log correlation with the help of Python scripts and tools. You'll get to know about the concepts of virtualization and how virtualization influences IT forensics, and you'll discover how to perform forensic analysis of a jailbroken/rooted mobile device that is based on iOS or Android.Finally, the book teaches you how to analyze volatile memory and search for known malware samples based on YARA rules.Style and approachThis easy-to-follow guide will demonstrate forensic analysis techniques by showing you how to solve real-word-scenarios step by step." @default.
- W2738402803 created "2017-07-31" @default.
- W2738402803 creator A5019291322 @default.
- W2738402803 creator A5051673783 @default.
- W2738402803 date "2015-10-30" @default.
- W2738402803 modified "2023-09-27" @default.
- W2738402803 title "Mastering Python Forensics" @default.
- W2738402803 hasPublicationYear "2015" @default.
- W2738402803 type Work @default.
- W2738402803 sameAs 2738402803 @default.
- W2738402803 citedByCount "0" @default.
- W2738402803 crossrefType "book" @default.
- W2738402803 hasAuthorship W2738402803A5019291322 @default.
- W2738402803 hasAuthorship W2738402803A5051673783 @default.
- W2738402803 hasConcept C111919701 @default.
- W2738402803 hasConcept C136764020 @default.
- W2738402803 hasConcept C199360897 @default.
- W2738402803 hasConcept C2781357168 @default.
- W2738402803 hasConcept C41008148 @default.
- W2738402803 hasConcept C519991488 @default.
- W2738402803 hasConcept C557433098 @default.
- W2738402803 hasConcept C61423126 @default.
- W2738402803 hasConcept C84418412 @default.
- W2738402803 hasConceptScore W2738402803C111919701 @default.
- W2738402803 hasConceptScore W2738402803C136764020 @default.
- W2738402803 hasConceptScore W2738402803C199360897 @default.
- W2738402803 hasConceptScore W2738402803C2781357168 @default.
- W2738402803 hasConceptScore W2738402803C41008148 @default.
- W2738402803 hasConceptScore W2738402803C519991488 @default.
- W2738402803 hasConceptScore W2738402803C557433098 @default.
- W2738402803 hasConceptScore W2738402803C61423126 @default.
- W2738402803 hasConceptScore W2738402803C84418412 @default.
- W2738402803 hasLocation W27384028031 @default.
- W2738402803 hasOpenAccess W2738402803 @default.
- W2738402803 hasPrimaryLocation W27384028031 @default.
- W2738402803 hasRelatedWork W1656490720 @default.
- W2738402803 hasRelatedWork W2310314275 @default.
- W2738402803 hasRelatedWork W2460999112 @default.
- W2738402803 hasRelatedWork W2537472606 @default.
- W2738402803 hasRelatedWork W2546020423 @default.
- W2738402803 hasRelatedWork W2747840490 @default.
- W2738402803 hasRelatedWork W2758334112 @default.
- W2738402803 hasRelatedWork W2778834316 @default.
- W2738402803 hasRelatedWork W2913099421 @default.
- W2738402803 hasRelatedWork W2914083163 @default.
- W2738402803 hasRelatedWork W2914663829 @default.
- W2738402803 hasRelatedWork W2950465679 @default.
- W2738402803 hasRelatedWork W2980625652 @default.
- W2738402803 hasRelatedWork W3162149541 @default.
- W2738402803 hasRelatedWork W3163783789 @default.
- W2738402803 hasRelatedWork W3187031798 @default.
- W2738402803 hasRelatedWork W3193321391 @default.
- W2738402803 hasRelatedWork W583213572 @default.
- W2738402803 hasRelatedWork W601456977 @default.
- W2738402803 hasRelatedWork W634618934 @default.
- W2738402803 isParatext "false" @default.
- W2738402803 isRetracted "false" @default.
- W2738402803 magId "2738402803" @default.
- W2738402803 workType "book" @default.