Matches in SemOpenAlex for { <https://semopenalex.org/work/W2738438564> ?p ?o ?g. }
- W2738438564 endingPage "85149" @default.
- W2738438564 startingPage "85136" @default.
- W2738438564 abstract "// Jialiang Yang 1 , Jing Qiu 2 , Kejing Wang 2 , Lijuan Zhu 2 , Jingjing Fan 2 , Deyin Zheng 3 , Xiaodi Meng 4 , Jiasheng Yang 5 , Lihong Peng 1 , Yu Fu 2 , Dahan Zhang 6 , Shouneng Peng 7 , Haiyun Huang 2 and Yi Zhang 2 1 College of Information Engineering, Changsha Medical University, Changsha 410219, P. R. China 2 Department of Mathematics/Network Engineering/Bioscience and Bioengineering/Library, Hebei University of Science and Technology, Shijiazhuang 050018, P. R. China 3 Department of Mathematics, Hangzhou Normal University, Hangzhou 311121, P. R. China 4 Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 35002, P. R. China 5 Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore 6 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P. R. China 7 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA Correspondence to: Yi Zhang, email: zhaqi1972@163.com Haiyun Huang, email: jialiang.yang@mssm.edu Keywords: bioinformatics, human obesity, obesity-related diseases, protein interaction network, gene expression Received: May 03, 2017 Accepted: June 05, 2017 Published: July 22, 2017 ABSTRACT Obesity is a primary risk factor for many diseases such as certain cancers. In this study, we have developed three algorithms including a random-walk based method OBNet, a shortest-path based method OBsp and a direct-overlap method OBoverlap, to reveal obesity-disease connections at protein-interaction subnetworks corresponding to thousands of biological functions and pathways. Through literature mining, we also curated an obesity-associated disease list, by which we compared the methods. As a result, OBNet outperforms other two methods. OBNet can predict whether a disease is obesity-related based on its associated genes. Meanwhile, OBNet identifies extensive connections between obesity genes and genes associated with a few diseases at various functional modules and pathways. Using breast cancer and Type 2 diabetes as two examples, OBNet identifies meaningful genes that may play key roles in connecting obesity and the two diseases. For example, TGFB1 and VEGFA are inferred to be the top two key genes mediating obesity-breast cancer connection in modules associated with brain development. Finally, the top modules identified by OBNet in breast cancer significantly overlap with modules identified from TCGA breast cancer gene expression study, revealing the power of OBNet in identifying biological processes involved in the disease." @default.
- W2738438564 created "2017-07-31" @default.
- W2738438564 creator A5007339758 @default.
- W2738438564 creator A5007431525 @default.
- W2738438564 creator A5017061303 @default.
- W2738438564 creator A5017675857 @default.
- W2738438564 creator A5018790219 @default.
- W2738438564 creator A5028692805 @default.
- W2738438564 creator A5039629749 @default.
- W2738438564 creator A5044544424 @default.
- W2738438564 creator A5047039551 @default.
- W2738438564 creator A5057638577 @default.
- W2738438564 creator A5058115191 @default.
- W2738438564 creator A5070564367 @default.
- W2738438564 creator A5071432504 @default.
- W2738438564 creator A5086712592 @default.
- W2738438564 date "2017-07-22" @default.
- W2738438564 modified "2023-09-27" @default.
- W2738438564 title "Using molecular functional networks to manifest connections between obesity and obesity-related diseases" @default.
- W2738438564 cites W1533942137 @default.
- W2738438564 cites W1564444007 @default.
- W2738438564 cites W1966327575 @default.
- W2738438564 cites W1977529131 @default.
- W2738438564 cites W1991970803 @default.
- W2738438564 cites W1995703529 @default.
- W2738438564 cites W1998513475 @default.
- W2738438564 cites W1998926248 @default.
- W2738438564 cites W2005220829 @default.
- W2738438564 cites W2018166320 @default.
- W2738438564 cites W2019168803 @default.
- W2738438564 cites W2025751709 @default.
- W2738438564 cites W2033105784 @default.
- W2738438564 cites W2036904235 @default.
- W2738438564 cites W2044386584 @default.
- W2738438564 cites W2053073979 @default.
- W2738438564 cites W2054796530 @default.
- W2738438564 cites W2058313025 @default.
- W2738438564 cites W2063777054 @default.
- W2738438564 cites W2064902601 @default.
- W2738438564 cites W2065043588 @default.
- W2738438564 cites W2068114776 @default.
- W2738438564 cites W2085326242 @default.
- W2738438564 cites W2086320398 @default.
- W2738438564 cites W2088940658 @default.
- W2738438564 cites W2095866442 @default.
- W2738438564 cites W2096173332 @default.
- W2738438564 cites W2096283457 @default.
- W2738438564 cites W2097658213 @default.
- W2738438564 cites W2098292382 @default.
- W2738438564 cites W2100784798 @default.
- W2738438564 cites W2105924489 @default.
- W2738438564 cites W2113017183 @default.
- W2738438564 cites W2114798448 @default.
- W2738438564 cites W2116868464 @default.
- W2738438564 cites W2117977995 @default.
- W2738438564 cites W2119412782 @default.
- W2738438564 cites W2120471801 @default.
- W2738438564 cites W2122863289 @default.
- W2738438564 cites W2123106337 @default.
- W2738438564 cites W2132681327 @default.
- W2738438564 cites W2135511903 @default.
- W2738438564 cites W2150367899 @default.
- W2738438564 cites W2152576550 @default.
- W2738438564 cites W2158569927 @default.
- W2738438564 cites W2164802216 @default.
- W2738438564 cites W2263739890 @default.
- W2738438564 cites W2296251405 @default.
- W2738438564 cites W2470226595 @default.
- W2738438564 cites W2516546691 @default.
- W2738438564 cites W2519824125 @default.
- W2738438564 cites W2620406790 @default.
- W2738438564 cites W3006074294 @default.
- W2738438564 cites W4230962320 @default.
- W2738438564 cites W4235391466 @default.
- W2738438564 doi "https://doi.org/10.18632/oncotarget.19490" @default.
- W2738438564 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5689599" @default.
- W2738438564 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29156709" @default.
- W2738438564 hasPublicationYear "2017" @default.
- W2738438564 type Work @default.
- W2738438564 sameAs 2738438564 @default.
- W2738438564 citedByCount "6" @default.
- W2738438564 countsByYear W27384385642017 @default.
- W2738438564 countsByYear W27384385642018 @default.
- W2738438564 countsByYear W27384385642020 @default.
- W2738438564 countsByYear W27384385642021 @default.
- W2738438564 countsByYear W27384385642023 @default.
- W2738438564 crossrefType "journal-article" @default.
- W2738438564 hasAuthorship W2738438564A5007339758 @default.
- W2738438564 hasAuthorship W2738438564A5007431525 @default.
- W2738438564 hasAuthorship W2738438564A5017061303 @default.
- W2738438564 hasAuthorship W2738438564A5017675857 @default.
- W2738438564 hasAuthorship W2738438564A5018790219 @default.
- W2738438564 hasAuthorship W2738438564A5028692805 @default.
- W2738438564 hasAuthorship W2738438564A5039629749 @default.
- W2738438564 hasAuthorship W2738438564A5044544424 @default.
- W2738438564 hasAuthorship W2738438564A5047039551 @default.
- W2738438564 hasAuthorship W2738438564A5057638577 @default.
- W2738438564 hasAuthorship W2738438564A5058115191 @default.