Matches in SemOpenAlex for { <https://semopenalex.org/work/W2738498448> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2738498448 abstract "In this study we explore the application of pattern recognition models for recognizing emotional reactions elicited by videos from electroencephalography (EEG). We show that both the presence and magnitude of each emotion can be predicted above chance levels with up to 88% accuracy. Furthermore, we show that there are differences in classifiability for different emotions and participants, but whether a participant’s data can be classified with respect to different emotions can itself be predicted from their EEG. Index Terms– Emotion recognition, electroenecephalography (EEG), pattern recognition, classification, regression, individual differences, affective computing applied." @default.
- W2738498448 created "2017-07-31" @default.
- W2738498448 creator A5016211090 @default.
- W2738498448 creator A5077056958 @default.
- W2738498448 date "2017-06-01" @default.
- W2738498448 modified "2023-09-23" @default.
- W2738498448 title "Emotional reaction recognition from EEG" @default.
- W2738498448 cites W1488671911 @default.
- W2738498448 cites W1520861770 @default.
- W2738498448 cites W2000241692 @default.
- W2738498448 cites W2032254851 @default.
- W2738498448 cites W2034744369 @default.
- W2738498448 cites W2109773980 @default.
- W2738498448 cites W2115810652 @default.
- W2738498448 cites W2122825543 @default.
- W2738498448 cites W2147697413 @default.
- W2738498448 cites W2154053567 @default.
- W2738498448 cites W2167575933 @default.
- W2738498448 cites W2560489016 @default.
- W2738498448 cites W2584561145 @default.
- W2738498448 cites W2729636573 @default.
- W2738498448 cites W4239510810 @default.
- W2738498448 cites W4294214781 @default.
- W2738498448 doi "https://doi.org/10.1109/prni.2017.7981501" @default.
- W2738498448 hasPublicationYear "2017" @default.
- W2738498448 type Work @default.
- W2738498448 sameAs 2738498448 @default.
- W2738498448 citedByCount "4" @default.
- W2738498448 countsByYear W27384984482018 @default.
- W2738498448 countsByYear W27384984482019 @default.
- W2738498448 crossrefType "proceedings-article" @default.
- W2738498448 hasAuthorship W2738498448A5016211090 @default.
- W2738498448 hasAuthorship W2738498448A5077056958 @default.
- W2738498448 hasConcept C153180895 @default.
- W2738498448 hasConcept C154945302 @default.
- W2738498448 hasConcept C15744967 @default.
- W2738498448 hasConcept C169760540 @default.
- W2738498448 hasConcept C28490314 @default.
- W2738498448 hasConcept C41008148 @default.
- W2738498448 hasConcept C522805319 @default.
- W2738498448 hasConceptScore W2738498448C153180895 @default.
- W2738498448 hasConceptScore W2738498448C154945302 @default.
- W2738498448 hasConceptScore W2738498448C15744967 @default.
- W2738498448 hasConceptScore W2738498448C169760540 @default.
- W2738498448 hasConceptScore W2738498448C28490314 @default.
- W2738498448 hasConceptScore W2738498448C41008148 @default.
- W2738498448 hasConceptScore W2738498448C522805319 @default.
- W2738498448 hasLocation W27384984481 @default.
- W2738498448 hasOpenAccess W2738498448 @default.
- W2738498448 hasPrimaryLocation W27384984481 @default.
- W2738498448 hasRelatedWork W2033914206 @default.
- W2738498448 hasRelatedWork W2146076056 @default.
- W2738498448 hasRelatedWork W2163831990 @default.
- W2738498448 hasRelatedWork W2368779261 @default.
- W2738498448 hasRelatedWork W2794438528 @default.
- W2738498448 hasRelatedWork W2893763841 @default.
- W2738498448 hasRelatedWork W3003836766 @default.
- W2738498448 hasRelatedWork W3107474891 @default.
- W2738498448 hasRelatedWork W4294597177 @default.
- W2738498448 hasRelatedWork W4313203779 @default.
- W2738498448 isParatext "false" @default.
- W2738498448 isRetracted "false" @default.
- W2738498448 magId "2738498448" @default.
- W2738498448 workType "article" @default.