Matches in SemOpenAlex for { <https://semopenalex.org/work/W2738761080> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2738761080 abstract "In this paper, we design provably-good algorithms for task allocation in multi-robot systems in the presence of payoff uncertainty. We consider a group of robots that has to perform a given set of tasks where each robot performs at most one task. The payoffs of the robots doing the tasks are assumed to be Gaussian random variables with known mean and variances. The total payoff of the robots is a sum of the individual payoffs of all the robots. The goal is to find an assignment with maximum payoff that can be achieved with a specified probability irrespective of the realization of the random variable. This problem can be formulated as a chance constrained combinatorial optimization problem. We develop a novel deterministic technique to solve this chance constrained optimization problem that ensures that the chance constraints are always satisfied. Adopting the notion of risk-aversion from the economics literature, we formulate a risk-averse task allocation problem, which is a deterministic integer optimization problem. We prove that by repeatedly solving the risk-averse task allocation problem using a one-dimensional search on the risk aversion parameter we find a solution for the chance constrained optimization formulation of the linear assignment problem with uncertain payoffs. We provide simulation results on randomly generated data to demonstrate our approach and also compare our method to existing approaches." @default.
- W2738761080 created "2017-07-31" @default.
- W2738761080 creator A5008577423 @default.
- W2738761080 creator A5091246511 @default.
- W2738761080 date "2017-05-01" @default.
- W2738761080 modified "2023-10-04" @default.
- W2738761080 title "Algorithm for optimal chance constrained linear assignment" @default.
- W2738761080 cites W1506734247 @default.
- W2738761080 cites W2009070933 @default.
- W2738761080 cites W2011565421 @default.
- W2738761080 cites W2096615883 @default.
- W2738761080 cites W2108772522 @default.
- W2738761080 cites W2113257089 @default.
- W2738761080 cites W2120268911 @default.
- W2738761080 cites W2126366668 @default.
- W2738761080 cites W2137714578 @default.
- W2738761080 cites W2142417067 @default.
- W2738761080 cites W2142544818 @default.
- W2738761080 cites W2143704222 @default.
- W2738761080 cites W2144827113 @default.
- W2738761080 cites W2157488300 @default.
- W2738761080 cites W2165622730 @default.
- W2738761080 cites W2175937483 @default.
- W2738761080 cites W2222512263 @default.
- W2738761080 cites W2294044584 @default.
- W2738761080 cites W2294586855 @default.
- W2738761080 cites W2301746362 @default.
- W2738761080 cites W4239749705 @default.
- W2738761080 doi "https://doi.org/10.1109/icra.2017.7989099" @default.
- W2738761080 hasPublicationYear "2017" @default.
- W2738761080 type Work @default.
- W2738761080 sameAs 2738761080 @default.
- W2738761080 citedByCount "16" @default.
- W2738761080 countsByYear W27387610802017 @default.
- W2738761080 countsByYear W27387610802018 @default.
- W2738761080 countsByYear W27387610802019 @default.
- W2738761080 countsByYear W27387610802020 @default.
- W2738761080 countsByYear W27387610802021 @default.
- W2738761080 countsByYear W27387610802022 @default.
- W2738761080 crossrefType "proceedings-article" @default.
- W2738761080 hasAuthorship W2738761080A5008577423 @default.
- W2738761080 hasAuthorship W2738761080A5091246511 @default.
- W2738761080 hasConcept C11413529 @default.
- W2738761080 hasConcept C126255220 @default.
- W2738761080 hasConcept C33923547 @default.
- W2738761080 hasConcept C41008148 @default.
- W2738761080 hasConcept C41045048 @default.
- W2738761080 hasConceptScore W2738761080C11413529 @default.
- W2738761080 hasConceptScore W2738761080C126255220 @default.
- W2738761080 hasConceptScore W2738761080C33923547 @default.
- W2738761080 hasConceptScore W2738761080C41008148 @default.
- W2738761080 hasConceptScore W2738761080C41045048 @default.
- W2738761080 hasLocation W27387610801 @default.
- W2738761080 hasOpenAccess W2738761080 @default.
- W2738761080 hasPrimaryLocation W27387610801 @default.
- W2738761080 hasRelatedWork W1990165789 @default.
- W2738761080 hasRelatedWork W2022674418 @default.
- W2738761080 hasRelatedWork W2333698505 @default.
- W2738761080 hasRelatedWork W2351491280 @default.
- W2738761080 hasRelatedWork W2371447506 @default.
- W2738761080 hasRelatedWork W2386767533 @default.
- W2738761080 hasRelatedWork W2889453578 @default.
- W2738761080 hasRelatedWork W2921722915 @default.
- W2738761080 hasRelatedWork W303980170 @default.
- W2738761080 hasRelatedWork W3141679561 @default.
- W2738761080 isParatext "false" @default.
- W2738761080 isRetracted "false" @default.
- W2738761080 magId "2738761080" @default.
- W2738761080 workType "article" @default.