Matches in SemOpenAlex for { <https://semopenalex.org/work/W2739345445> ?p ?o ?g. }
- W2739345445 endingPage "932" @default.
- W2739345445 startingPage "924" @default.
- W2739345445 abstract "Generally, tweets about brands, news and so forth, are mostly delivered to the Twitter user in a reverse chronological order choosing among those twitted by the so-called followed users. Recently, Twitter is facing with information overload by introducing new filtering features, such as “while you are away”, in order to show only a few tweets summarizing the posted ones, and ranking the tweets considering the quality, in addition to timeliness. Trivially enough we state that the strategy to rank the tweets to maximize the user engagement and, why not, augmenting the tweet and re-tweet rates, is not unique. There are several dimensions affecting the ranking, such as time, location, semantic, publisher authority, quality, and so on. We point out that the tweet ranking model should vary according to the user’s context, interests and how those change along the timeline, cyclically, weekly or at specific date-time when the user logs in. In this work, we introduce a deep learning method attempting to re-adapt the ranking of the tweets by preferring those that are more likely interesting for the user. User’s interests are extracted by mainly considering previous user re-tweets, replies and also the time when they occurred. We evaluate a ranking model by measuring how many tweets that will be re-tweeted in the near future were included in the top-ranked tweet list. The results of the proposed ranking model revealed good performances overcoming the methods that consider only the reverse-chronological order or user’s interest score. In addition, we pointed out that in our dataset the most impacting features on the performance of proposed ranking model are: publisher authority, tweet content measures, and time-awareness." @default.
- W2739345445 created "2017-07-31" @default.
- W2739345445 creator A5008984322 @default.
- W2739345445 creator A5016277608 @default.
- W2739345445 creator A5036423849 @default.
- W2739345445 creator A5056422946 @default.
- W2739345445 creator A5075091553 @default.
- W2739345445 date "2019-04-01" @default.
- W2739345445 modified "2023-09-30" @default.
- W2739345445 title "Time-aware adaptive tweets ranking through deep learning" @default.
- W2739345445 cites W1838153851 @default.
- W2739345445 cites W1995541211 @default.
- W2739345445 cites W2031363984 @default.
- W2739345445 cites W2033389224 @default.
- W2739345445 cites W2043098104 @default.
- W2739345445 cites W2056754514 @default.
- W2739345445 cites W2083196438 @default.
- W2739345445 cites W2091432990 @default.
- W2739345445 cites W2100495367 @default.
- W2739345445 cites W2117273438 @default.
- W2739345445 cites W2129011250 @default.
- W2739345445 cites W2148815800 @default.
- W2739345445 cites W2149427297 @default.
- W2739345445 cites W2176396844 @default.
- W2739345445 cites W2426621241 @default.
- W2739345445 cites W2533705527 @default.
- W2739345445 cites W630815720 @default.
- W2739345445 cites W2028907798 @default.
- W2739345445 doi "https://doi.org/10.1016/j.future.2017.07.039" @default.
- W2739345445 hasPublicationYear "2019" @default.
- W2739345445 type Work @default.
- W2739345445 sameAs 2739345445 @default.
- W2739345445 citedByCount "20" @default.
- W2739345445 countsByYear W27393454452018 @default.
- W2739345445 countsByYear W27393454452019 @default.
- W2739345445 countsByYear W27393454452020 @default.
- W2739345445 countsByYear W27393454452021 @default.
- W2739345445 countsByYear W27393454452022 @default.
- W2739345445 countsByYear W27393454452023 @default.
- W2739345445 crossrefType "journal-article" @default.
- W2739345445 hasAuthorship W2739345445A5008984322 @default.
- W2739345445 hasAuthorship W2739345445A5016277608 @default.
- W2739345445 hasAuthorship W2739345445A5036423849 @default.
- W2739345445 hasAuthorship W2739345445A5056422946 @default.
- W2739345445 hasAuthorship W2739345445A5075091553 @default.
- W2739345445 hasConcept C10138342 @default.
- W2739345445 hasConcept C111472728 @default.
- W2739345445 hasConcept C114614502 @default.
- W2739345445 hasConcept C136764020 @default.
- W2739345445 hasConcept C138885662 @default.
- W2739345445 hasConcept C151730666 @default.
- W2739345445 hasConcept C154945302 @default.
- W2739345445 hasConcept C162324750 @default.
- W2739345445 hasConcept C164226766 @default.
- W2739345445 hasConcept C166957645 @default.
- W2739345445 hasConcept C182306322 @default.
- W2739345445 hasConcept C186625053 @default.
- W2739345445 hasConcept C189430467 @default.
- W2739345445 hasConcept C23123220 @default.
- W2739345445 hasConcept C2524010 @default.
- W2739345445 hasConcept C2779343474 @default.
- W2739345445 hasConcept C2779530757 @default.
- W2739345445 hasConcept C28719098 @default.
- W2739345445 hasConcept C33923547 @default.
- W2739345445 hasConcept C41008148 @default.
- W2739345445 hasConcept C4438859 @default.
- W2739345445 hasConcept C86037889 @default.
- W2739345445 hasConcept C86803240 @default.
- W2739345445 hasConcept C95457728 @default.
- W2739345445 hasConceptScore W2739345445C10138342 @default.
- W2739345445 hasConceptScore W2739345445C111472728 @default.
- W2739345445 hasConceptScore W2739345445C114614502 @default.
- W2739345445 hasConceptScore W2739345445C136764020 @default.
- W2739345445 hasConceptScore W2739345445C138885662 @default.
- W2739345445 hasConceptScore W2739345445C151730666 @default.
- W2739345445 hasConceptScore W2739345445C154945302 @default.
- W2739345445 hasConceptScore W2739345445C162324750 @default.
- W2739345445 hasConceptScore W2739345445C164226766 @default.
- W2739345445 hasConceptScore W2739345445C166957645 @default.
- W2739345445 hasConceptScore W2739345445C182306322 @default.
- W2739345445 hasConceptScore W2739345445C186625053 @default.
- W2739345445 hasConceptScore W2739345445C189430467 @default.
- W2739345445 hasConceptScore W2739345445C23123220 @default.
- W2739345445 hasConceptScore W2739345445C2524010 @default.
- W2739345445 hasConceptScore W2739345445C2779343474 @default.
- W2739345445 hasConceptScore W2739345445C2779530757 @default.
- W2739345445 hasConceptScore W2739345445C28719098 @default.
- W2739345445 hasConceptScore W2739345445C33923547 @default.
- W2739345445 hasConceptScore W2739345445C41008148 @default.
- W2739345445 hasConceptScore W2739345445C4438859 @default.
- W2739345445 hasConceptScore W2739345445C86037889 @default.
- W2739345445 hasConceptScore W2739345445C86803240 @default.
- W2739345445 hasConceptScore W2739345445C95457728 @default.
- W2739345445 hasLocation W27393454451 @default.
- W2739345445 hasOpenAccess W2739345445 @default.
- W2739345445 hasPrimaryLocation W27393454451 @default.
- W2739345445 hasRelatedWork W116708988 @default.
- W2739345445 hasRelatedWork W2122840831 @default.