Matches in SemOpenAlex for { <https://semopenalex.org/work/W2739404822> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2739404822 abstract "In this paper a new artificial neural network (ANN) method is proposed to forecast wind speed forecasting. The use of wind power generation (WPG) is expected to reduce CO <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> as the framework of environmental preservation. However, output of WPG is affected by the meteorological conditions significantly. As the first stage of research, this paper focuses on wind speed that affects the output of WPG significantly. The proposed method is based on the intelligent system integration of GRBFN (Generalized Radial Based Function Network) of ANN and the S-Transform of the pre-filtering technique. GRBFN is used as the forecasting model to deal with nonlinear time series of wind speed. The S-Transform is employed to extract features of input variables as a pre-filtering technique in the forecasting model. Furthermore, the two-staged forecasting method is proposed to reduce the forecasting errors. EPSO of evolutionary computation is applied to optimizing the weights between neurons of GRBFN. The proposed method is successfully applied to real wind speed data of Miyakojima in Japan." @default.
- W2739404822 created "2017-07-31" @default.
- W2739404822 creator A5043750933 @default.
- W2739404822 creator A5071021361 @default.
- W2739404822 date "2017-06-01" @default.
- W2739404822 modified "2023-09-27" @default.
- W2739404822 title "Application of S-transform-based artificial neural network to wind speed forecasting" @default.
- W2739404822 cites W1986754283 @default.
- W2739404822 cites W2006558836 @default.
- W2739404822 cites W2032505229 @default.
- W2739404822 cites W2050683094 @default.
- W2739404822 cites W2059852979 @default.
- W2739404822 cites W2059863954 @default.
- W2739404822 cites W2066890570 @default.
- W2739404822 cites W2075967464 @default.
- W2739404822 cites W2096684483 @default.
- W2739404822 cites W2099631309 @default.
- W2739404822 cites W2113350326 @default.
- W2739404822 cites W2137360132 @default.
- W2739404822 cites W2143703772 @default.
- W2739404822 cites W2143956139 @default.
- W2739404822 cites W2152195021 @default.
- W2739404822 cites W2158671777 @default.
- W2739404822 cites W2492181757 @default.
- W2739404822 doi "https://doi.org/10.1109/ptc.2017.7981121" @default.
- W2739404822 hasPublicationYear "2017" @default.
- W2739404822 type Work @default.
- W2739404822 sameAs 2739404822 @default.
- W2739404822 citedByCount "2" @default.
- W2739404822 countsByYear W27394048222020 @default.
- W2739404822 crossrefType "proceedings-article" @default.
- W2739404822 hasAuthorship W2739404822A5043750933 @default.
- W2739404822 hasAuthorship W2739404822A5071021361 @default.
- W2739404822 hasConcept C105902424 @default.
- W2739404822 hasConcept C11413529 @default.
- W2739404822 hasConcept C119599485 @default.
- W2739404822 hasConcept C121332964 @default.
- W2739404822 hasConcept C127413603 @default.
- W2739404822 hasConcept C153294291 @default.
- W2739404822 hasConcept C154945302 @default.
- W2739404822 hasConcept C158622935 @default.
- W2739404822 hasConcept C161067210 @default.
- W2739404822 hasConcept C205649164 @default.
- W2739404822 hasConcept C41008148 @default.
- W2739404822 hasConcept C45374587 @default.
- W2739404822 hasConcept C50644808 @default.
- W2739404822 hasConcept C62520636 @default.
- W2739404822 hasConcept C78600449 @default.
- W2739404822 hasConceptScore W2739404822C105902424 @default.
- W2739404822 hasConceptScore W2739404822C11413529 @default.
- W2739404822 hasConceptScore W2739404822C119599485 @default.
- W2739404822 hasConceptScore W2739404822C121332964 @default.
- W2739404822 hasConceptScore W2739404822C127413603 @default.
- W2739404822 hasConceptScore W2739404822C153294291 @default.
- W2739404822 hasConceptScore W2739404822C154945302 @default.
- W2739404822 hasConceptScore W2739404822C158622935 @default.
- W2739404822 hasConceptScore W2739404822C161067210 @default.
- W2739404822 hasConceptScore W2739404822C205649164 @default.
- W2739404822 hasConceptScore W2739404822C41008148 @default.
- W2739404822 hasConceptScore W2739404822C45374587 @default.
- W2739404822 hasConceptScore W2739404822C50644808 @default.
- W2739404822 hasConceptScore W2739404822C62520636 @default.
- W2739404822 hasConceptScore W2739404822C78600449 @default.
- W2739404822 hasLocation W27394048221 @default.
- W2739404822 hasOpenAccess W2739404822 @default.
- W2739404822 hasPrimaryLocation W27394048221 @default.
- W2739404822 hasRelatedWork W2008549418 @default.
- W2739404822 hasRelatedWork W2028780417 @default.
- W2739404822 hasRelatedWork W2371928941 @default.
- W2739404822 hasRelatedWork W2386387936 @default.
- W2739404822 hasRelatedWork W2899217644 @default.
- W2739404822 hasRelatedWork W3111992318 @default.
- W2739404822 hasRelatedWork W4309997723 @default.
- W2739404822 hasRelatedWork W4327640784 @default.
- W2739404822 hasRelatedWork W4377969695 @default.
- W2739404822 hasRelatedWork W4380482219 @default.
- W2739404822 isParatext "false" @default.
- W2739404822 isRetracted "false" @default.
- W2739404822 magId "2739404822" @default.
- W2739404822 workType "article" @default.