Matches in SemOpenAlex for { <https://semopenalex.org/work/W2739408045> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2739408045 endingPage "41" @default.
- W2739408045 startingPage "29" @default.
- W2739408045 abstract "Sentiment classification aims to use automatic tools to explore the subjective information like opinions and attitudes from user comments. Most of existing methods are centered on the semantic relationships and the extraction of syntactic feature, while the document topic feature is ignored. In this paper, a weakly supervised hierarchical model called external knowledge-based Latent Dirichlet Allocation (ELDA) is proposed to extract document topic feature. First of all, we take advantage of ELDA to compress document feature and increase the polarity weight of document topic feature. And then, we train a classifier based on the topic feature using SVM. Experiment results on one English dataset and one Chinese dataset show that our method can outperform the state-of-the-art models by at least $$4%$$ in terms of accuracy." @default.
- W2739408045 created "2017-07-31" @default.
- W2739408045 creator A5008289090 @default.
- W2739408045 creator A5020181842 @default.
- W2739408045 creator A5027475930 @default.
- W2739408045 date "2017-01-01" @default.
- W2739408045 modified "2023-09-27" @default.
- W2739408045 title "Weakly Supervised Feature Compression Based Topic Model for Sentiment Classification" @default.
- W2739408045 cites W1536516100 @default.
- W2739408045 cites W1663984431 @default.
- W2739408045 cites W1975241571 @default.
- W2739408045 cites W1979772657 @default.
- W2739408045 cites W2001082470 @default.
- W2739408045 cites W2004691253 @default.
- W2739408045 cites W2041114345 @default.
- W2739408045 cites W2067292826 @default.
- W2739408045 cites W2077563243 @default.
- W2739408045 cites W2078419218 @default.
- W2739408045 cites W2096707493 @default.
- W2739408045 cites W2102677772 @default.
- W2739408045 cites W2114524997 @default.
- W2739408045 cites W2150193144 @default.
- W2739408045 cites W2166706824 @default.
- W2739408045 cites W2171836785 @default.
- W2739408045 cites W2248051232 @default.
- W2739408045 cites W2397331935 @default.
- W2739408045 cites W2413397828 @default.
- W2739408045 cites W4205184193 @default.
- W2739408045 cites W4233135949 @default.
- W2739408045 cites W52907090 @default.
- W2739408045 doi "https://doi.org/10.1007/978-3-319-63558-3_3" @default.
- W2739408045 hasPublicationYear "2017" @default.
- W2739408045 type Work @default.
- W2739408045 sameAs 2739408045 @default.
- W2739408045 citedByCount "0" @default.
- W2739408045 crossrefType "book-chapter" @default.
- W2739408045 hasAuthorship W2739408045A5008289090 @default.
- W2739408045 hasAuthorship W2739408045A5020181842 @default.
- W2739408045 hasAuthorship W2739408045A5027475930 @default.
- W2739408045 hasConcept C12267149 @default.
- W2739408045 hasConcept C138885662 @default.
- W2739408045 hasConcept C153180895 @default.
- W2739408045 hasConcept C154945302 @default.
- W2739408045 hasConcept C171686336 @default.
- W2739408045 hasConcept C204321447 @default.
- W2739408045 hasConcept C23123220 @default.
- W2739408045 hasConcept C2776401178 @default.
- W2739408045 hasConcept C41008148 @default.
- W2739408045 hasConcept C41895202 @default.
- W2739408045 hasConcept C500882744 @default.
- W2739408045 hasConcept C52622490 @default.
- W2739408045 hasConcept C66402592 @default.
- W2739408045 hasConcept C95623464 @default.
- W2739408045 hasConceptScore W2739408045C12267149 @default.
- W2739408045 hasConceptScore W2739408045C138885662 @default.
- W2739408045 hasConceptScore W2739408045C153180895 @default.
- W2739408045 hasConceptScore W2739408045C154945302 @default.
- W2739408045 hasConceptScore W2739408045C171686336 @default.
- W2739408045 hasConceptScore W2739408045C204321447 @default.
- W2739408045 hasConceptScore W2739408045C23123220 @default.
- W2739408045 hasConceptScore W2739408045C2776401178 @default.
- W2739408045 hasConceptScore W2739408045C41008148 @default.
- W2739408045 hasConceptScore W2739408045C41895202 @default.
- W2739408045 hasConceptScore W2739408045C500882744 @default.
- W2739408045 hasConceptScore W2739408045C52622490 @default.
- W2739408045 hasConceptScore W2739408045C66402592 @default.
- W2739408045 hasConceptScore W2739408045C95623464 @default.
- W2739408045 hasLocation W27394080451 @default.
- W2739408045 hasOpenAccess W2739408045 @default.
- W2739408045 hasPrimaryLocation W27394080451 @default.
- W2739408045 hasRelatedWork W2336974148 @default.
- W2739408045 hasRelatedWork W2370554703 @default.
- W2739408045 hasRelatedWork W2546942002 @default.
- W2739408045 hasRelatedWork W2625329765 @default.
- W2739408045 hasRelatedWork W3217600605 @default.
- W2739408045 hasRelatedWork W4220939684 @default.
- W2739408045 hasRelatedWork W4297006557 @default.
- W2739408045 hasRelatedWork W4302818661 @default.
- W2739408045 hasRelatedWork W4308261379 @default.
- W2739408045 hasRelatedWork W4313025659 @default.
- W2739408045 isParatext "false" @default.
- W2739408045 isRetracted "false" @default.
- W2739408045 magId "2739408045" @default.
- W2739408045 workType "book-chapter" @default.