Matches in SemOpenAlex for { <https://semopenalex.org/work/W2739765497> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2739765497 abstract "Overweight and obesity have become a major health concern in the world. Experts believe that fat accumulation in human body (especially at the abdominal zone) has adirect correlation with nonalcoholic fatty liver diseases. Nevertheless, there are no studies that highlight the relationship between a realistic representation of thequantity of abdominal fat and the level of diffused fat in the liver. This study aims to investigate the strength and the type of correlation between the indexes of abdominal fat and the level of diffused fat in human liver. Adaptive methods for abdominal fat segmentation and human liver segmentation using CT images are proposed. A modified Fuzzy C mean clustering method and Otsu thresholding technique are employed to segment the CT images of each subject intofat and non-fat tissues individually. Then, the segmented fat tissues in each CT slice are further separated into subcutaneous fat and visceral fat. Finally, the segmented fat tissues in the CT dataset for each subject are used to evaluate the quantities of abdominal fat by dividing the number of fat pixels over the number of total abdominal pixels. The whole liver segmentation procedure is based on processing the CT slices one by one. Gray level, Gaussian gradient, region growing algorithm,distance transformation, canny edge detector and anatomic information are employedtogether to segment the liver in each CT slice. Then the diffused fat in the segmented liver is evaluated by calculating the mean of liver attenuation (measured inHounsfield Units) for the segmented liver. The lower the mean value, the lower the tissue density and hence the greater the fat content. Experimental results show that the performances of the abdominal fat segmentation method and the liver segmentation method are very promising. The abdominal fatsegmentation method shows a great capability to handle a wide variety of abdominal wall shapes. The liver segmentation method also shows a good performance as well.Several challenges and difficulties due to the similarity of gray level intensities of the liver and the attached organs have been overcome in the proposed liver segmentation method. Data sets of 125 subjects were employed to study the relationship between abdominal fat accumulation and diffused fat in the liver. Experimental results showthat there is medium negative correlation between the visceral fat to abdomen size ratio and the mean of liver intensity values (R= - 0.3168, P<0.0005). The samecorrelation is found between the mean of liver intensity values and the total abdominal fat to abdomen size ratio (R= - 0.3382, P<0.0005). In conclusion, it could be said that the accumulation of abdominal fat is not the main reason for the increase in the level of diffused fat in the liver. However it does somehow contribute towards the process of increasing that level." @default.
- W2739765497 created "2017-08-08" @default.
- W2739765497 creator A5091286790 @default.
- W2739765497 date "2012-01-01" @default.
- W2739765497 modified "2023-09-27" @default.
- W2739765497 title "Adaptive abdominal fat and liver segmentation of ct scan images for abdominal fat-fatty liver correlation" @default.
- W2739765497 hasPublicationYear "2012" @default.
- W2739765497 type Work @default.
- W2739765497 sameAs 2739765497 @default.
- W2739765497 citedByCount "0" @default.
- W2739765497 crossrefType "dissertation" @default.
- W2739765497 hasAuthorship W2739765497A5091286790 @default.
- W2739765497 hasConcept C115961682 @default.
- W2739765497 hasConcept C117220453 @default.
- W2739765497 hasConcept C124504099 @default.
- W2739765497 hasConcept C126322002 @default.
- W2739765497 hasConcept C126838900 @default.
- W2739765497 hasConcept C153180895 @default.
- W2739765497 hasConcept C154945302 @default.
- W2739765497 hasConcept C171089720 @default.
- W2739765497 hasConcept C187954543 @default.
- W2739765497 hasConcept C191178318 @default.
- W2739765497 hasConcept C2524010 @default.
- W2739765497 hasConcept C2778772119 @default.
- W2739765497 hasConcept C2779134260 @default.
- W2739765497 hasConcept C2779983558 @default.
- W2739765497 hasConcept C2992518758 @default.
- W2739765497 hasConcept C33923547 @default.
- W2739765497 hasConcept C41008148 @default.
- W2739765497 hasConcept C544519230 @default.
- W2739765497 hasConcept C71924100 @default.
- W2739765497 hasConcept C89600930 @default.
- W2739765497 hasConceptScore W2739765497C115961682 @default.
- W2739765497 hasConceptScore W2739765497C117220453 @default.
- W2739765497 hasConceptScore W2739765497C124504099 @default.
- W2739765497 hasConceptScore W2739765497C126322002 @default.
- W2739765497 hasConceptScore W2739765497C126838900 @default.
- W2739765497 hasConceptScore W2739765497C153180895 @default.
- W2739765497 hasConceptScore W2739765497C154945302 @default.
- W2739765497 hasConceptScore W2739765497C171089720 @default.
- W2739765497 hasConceptScore W2739765497C187954543 @default.
- W2739765497 hasConceptScore W2739765497C191178318 @default.
- W2739765497 hasConceptScore W2739765497C2524010 @default.
- W2739765497 hasConceptScore W2739765497C2778772119 @default.
- W2739765497 hasConceptScore W2739765497C2779134260 @default.
- W2739765497 hasConceptScore W2739765497C2779983558 @default.
- W2739765497 hasConceptScore W2739765497C2992518758 @default.
- W2739765497 hasConceptScore W2739765497C33923547 @default.
- W2739765497 hasConceptScore W2739765497C41008148 @default.
- W2739765497 hasConceptScore W2739765497C544519230 @default.
- W2739765497 hasConceptScore W2739765497C71924100 @default.
- W2739765497 hasConceptScore W2739765497C89600930 @default.
- W2739765497 hasLocation W27397654971 @default.
- W2739765497 hasOpenAccess W2739765497 @default.
- W2739765497 hasPrimaryLocation W27397654971 @default.
- W2739765497 hasRelatedWork W1579717823 @default.
- W2739765497 hasRelatedWork W1604751738 @default.
- W2739765497 hasRelatedWork W1837789628 @default.
- W2739765497 hasRelatedWork W1992712179 @default.
- W2739765497 hasRelatedWork W1993603351 @default.
- W2739765497 hasRelatedWork W2005848939 @default.
- W2739765497 hasRelatedWork W2039865729 @default.
- W2739765497 hasRelatedWork W2146581895 @default.
- W2739765497 hasRelatedWork W2311004707 @default.
- W2739765497 hasRelatedWork W2347386415 @default.
- W2739765497 hasRelatedWork W2780449831 @default.
- W2739765497 hasRelatedWork W2995024066 @default.
- W2739765497 hasRelatedWork W3047289734 @default.
- W2739765497 hasRelatedWork W3088595662 @default.
- W2739765497 hasRelatedWork W3183184377 @default.
- W2739765497 hasRelatedWork W2408745039 @default.
- W2739765497 hasRelatedWork W2734441243 @default.
- W2739765497 hasRelatedWork W2822535826 @default.
- W2739765497 hasRelatedWork W2856354500 @default.
- W2739765497 hasRelatedWork W3172855364 @default.
- W2739765497 isParatext "false" @default.
- W2739765497 isRetracted "false" @default.
- W2739765497 magId "2739765497" @default.
- W2739765497 workType "dissertation" @default.