Matches in SemOpenAlex for { <https://semopenalex.org/work/W2739824434> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2739824434 endingPage "3275" @default.
- W2739824434 startingPage "3265" @default.
- W2739824434 abstract "Scenario generation is an important step in the operation and planning of power systems with high renewable penetrations. In this work, we proposed a data-driven approach for scenario generation using generative adversarial networks, which is based on two interconnected deep neural networks. Compared with existing methods based on probabilistic models that are often hard to scale or sample from, our method is data-driven, and captures renewable energy production patterns in both temporal and spatial dimensions for a large number of correlated resources. For validation, we use wind and solar times-series data from NREL integration data sets. We demonstrate that the proposed method is able to generate realistic wind and photovoltaic power profiles with full diversity of behaviors. We also illustrate how to generate scenarios based on different conditions of interest by using labeled data during training. For example, scenarios can be conditioned on weather events~(e.g. high wind day) or time of the year~(e,g. solar generation for a day in July). Because of the feedforward nature of the neural networks, scenarios can be generated extremely efficiently without sophisticated sampling techniques." @default.
- W2739824434 created "2017-08-08" @default.
- W2739824434 creator A5002889074 @default.
- W2739824434 creator A5013901541 @default.
- W2739824434 creator A5014046423 @default.
- W2739824434 creator A5080591736 @default.
- W2739824434 date "2018-05-01" @default.
- W2739824434 modified "2023-10-06" @default.
- W2739824434 title "Model-Free Renewable Scenario Generation Using Generative Adversarial Networks" @default.
- W2739824434 cites W1569990960 @default.
- W2739824434 cites W1971474913 @default.
- W2739824434 cites W1976405499 @default.
- W2739824434 cites W2006558836 @default.
- W2739824434 cites W2009012905 @default.
- W2739824434 cites W2062343321 @default.
- W2739824434 cites W2062778210 @default.
- W2739824434 cites W2102173406 @default.
- W2739824434 cites W2113222113 @default.
- W2739824434 cites W2113810680 @default.
- W2739824434 cites W2143668817 @default.
- W2739824434 cites W2147755528 @default.
- W2739824434 cites W2148402438 @default.
- W2739824434 cites W2286752160 @default.
- W2739824434 cites W2345777279 @default.
- W2739824434 cites W2507646074 @default.
- W2739824434 cites W326249748 @default.
- W2739824434 doi "https://doi.org/10.1109/tpwrs.2018.2794541" @default.
- W2739824434 hasPublicationYear "2018" @default.
- W2739824434 type Work @default.
- W2739824434 sameAs 2739824434 @default.
- W2739824434 citedByCount "335" @default.
- W2739824434 countsByYear W27398244342018 @default.
- W2739824434 countsByYear W27398244342019 @default.
- W2739824434 countsByYear W27398244342020 @default.
- W2739824434 countsByYear W27398244342021 @default.
- W2739824434 countsByYear W27398244342022 @default.
- W2739824434 countsByYear W27398244342023 @default.
- W2739824434 crossrefType "journal-article" @default.
- W2739824434 hasAuthorship W2739824434A5002889074 @default.
- W2739824434 hasAuthorship W2739824434A5013901541 @default.
- W2739824434 hasAuthorship W2739824434A5014046423 @default.
- W2739824434 hasAuthorship W2739824434A5080591736 @default.
- W2739824434 hasBestOaLocation W27398244342 @default.
- W2739824434 hasConcept C119599485 @default.
- W2739824434 hasConcept C121332964 @default.
- W2739824434 hasConcept C127413603 @default.
- W2739824434 hasConcept C154945302 @default.
- W2739824434 hasConcept C163258240 @default.
- W2739824434 hasConcept C188573790 @default.
- W2739824434 hasConcept C37736160 @default.
- W2739824434 hasConcept C39890363 @default.
- W2739824434 hasConcept C41008148 @default.
- W2739824434 hasConcept C423512 @default.
- W2739824434 hasConcept C62520636 @default.
- W2739824434 hasConceptScore W2739824434C119599485 @default.
- W2739824434 hasConceptScore W2739824434C121332964 @default.
- W2739824434 hasConceptScore W2739824434C127413603 @default.
- W2739824434 hasConceptScore W2739824434C154945302 @default.
- W2739824434 hasConceptScore W2739824434C163258240 @default.
- W2739824434 hasConceptScore W2739824434C188573790 @default.
- W2739824434 hasConceptScore W2739824434C37736160 @default.
- W2739824434 hasConceptScore W2739824434C39890363 @default.
- W2739824434 hasConceptScore W2739824434C41008148 @default.
- W2739824434 hasConceptScore W2739824434C423512 @default.
- W2739824434 hasConceptScore W2739824434C62520636 @default.
- W2739824434 hasIssue "3" @default.
- W2739824434 hasLocation W27398244341 @default.
- W2739824434 hasLocation W27398244342 @default.
- W2739824434 hasOpenAccess W2739824434 @default.
- W2739824434 hasPrimaryLocation W27398244341 @default.
- W2739824434 hasRelatedWork W2901368259 @default.
- W2739824434 hasRelatedWork W2998996837 @default.
- W2739824434 hasRelatedWork W3024390022 @default.
- W2739824434 hasRelatedWork W3120345119 @default.
- W2739824434 hasRelatedWork W3156291593 @default.
- W2739824434 hasRelatedWork W3164279787 @default.
- W2739824434 hasRelatedWork W4296176982 @default.
- W2739824434 hasRelatedWork W4311460979 @default.
- W2739824434 hasRelatedWork W4313479464 @default.
- W2739824434 hasRelatedWork W4316035501 @default.
- W2739824434 hasVolume "33" @default.
- W2739824434 isParatext "false" @default.
- W2739824434 isRetracted "false" @default.
- W2739824434 magId "2739824434" @default.
- W2739824434 workType "article" @default.