Matches in SemOpenAlex for { <https://semopenalex.org/work/W2739969158> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2739969158 endingPage "227" @default.
- W2739969158 startingPage "214" @default.
- W2739969158 abstract "Record linkage (RL) is the process of identifying and linking data that relates to the same physical entity across multiple heterogeneous data sources. Deterministic linkage methods rely on the presence of common uniquely identifying attributes across all sources while probabilistic approaches use non-unique attributes and calculates similarity indexes for pair wise comparisons. A key component of record linkage is accuracy assessment — the process of manually verifying and validating matched pairs to further refine linkage parameters and increase its overall effectiveness. This process however is time-consuming and impractical when applied to large administrative data sources where millions of records must be linked. Additionally, it is potentially biased as the gold standard used is often the reviewer’s intuition. In this paper, we present an approach for assessing and refining the accuracy of probabilistic linkage based on different supervised machine learning methods (decision trees, naive Bayes, logistic regression, random forest, linear support vector machines and gradient boosted trees). We used data sets extracted from huge Brazilian socioeconomic and public health care data sources. These models were evaluated using receiver operating characteristic plots, sensitivity, specificity and positive predictive values collected from a 10-fold cross-validation method. Results show that logistic regression outperforms other classifiers and enables the creation of a generalized, very accurate model to validate linkage results." @default.
- W2739969158 created "2017-08-08" @default.
- W2739969158 creator A5000150014 @default.
- W2739969158 creator A5064745062 @default.
- W2739969158 creator A5069336374 @default.
- W2739969158 creator A5073010916 @default.
- W2739969158 creator A5089501135 @default.
- W2739969158 date "2017-01-01" @default.
- W2739969158 modified "2023-10-17" @default.
- W2739969158 title "A Machine Learning Trainable Model to Assess the Accuracy of Probabilistic Record Linkage" @default.
- W2739969158 cites W1597164057 @default.
- W2739969158 cites W1644997609 @default.
- W2739969158 cites W166169566 @default.
- W2739969158 cites W1909101599 @default.
- W2739969158 cites W1987869189 @default.
- W2739969158 cites W2052390074 @default.
- W2739969158 cites W2054804828 @default.
- W2739969158 cites W2070493638 @default.
- W2739969158 cites W2073471108 @default.
- W2739969158 cites W2079630184 @default.
- W2739969158 cites W2103847452 @default.
- W2739969158 cites W2111116800 @default.
- W2739969158 cites W2122210511 @default.
- W2739969158 cites W2125686177 @default.
- W2739969158 cites W2139212933 @default.
- W2739969158 cites W2157161149 @default.
- W2739969158 cites W2160598880 @default.
- W2739969158 cites W2161600801 @default.
- W2739969158 cites W2163756102 @default.
- W2739969158 cites W2606834781 @default.
- W2739969158 cites W2911964244 @default.
- W2739969158 cites W2516085159 @default.
- W2739969158 doi "https://doi.org/10.1007/978-3-319-64283-3_16" @default.
- W2739969158 hasPublicationYear "2017" @default.
- W2739969158 type Work @default.
- W2739969158 sameAs 2739969158 @default.
- W2739969158 citedByCount "7" @default.
- W2739969158 countsByYear W27399691582018 @default.
- W2739969158 countsByYear W27399691582019 @default.
- W2739969158 countsByYear W27399691582020 @default.
- W2739969158 countsByYear W27399691582021 @default.
- W2739969158 crossrefType "book-chapter" @default.
- W2739969158 hasAuthorship W2739969158A5000150014 @default.
- W2739969158 hasAuthorship W2739969158A5064745062 @default.
- W2739969158 hasAuthorship W2739969158A5069336374 @default.
- W2739969158 hasAuthorship W2739969158A5073010916 @default.
- W2739969158 hasAuthorship W2739969158A5089501135 @default.
- W2739969158 hasBestOaLocation W27399691582 @default.
- W2739969158 hasConcept C104317684 @default.
- W2739969158 hasConcept C119857082 @default.
- W2739969158 hasConcept C142210648 @default.
- W2739969158 hasConcept C144024400 @default.
- W2739969158 hasConcept C149923435 @default.
- W2739969158 hasConcept C154945302 @default.
- W2739969158 hasConcept C185592680 @default.
- W2739969158 hasConcept C2908647359 @default.
- W2739969158 hasConcept C31266012 @default.
- W2739969158 hasConcept C41008148 @default.
- W2739969158 hasConcept C49937458 @default.
- W2739969158 hasConcept C55493867 @default.
- W2739969158 hasConceptScore W2739969158C104317684 @default.
- W2739969158 hasConceptScore W2739969158C119857082 @default.
- W2739969158 hasConceptScore W2739969158C142210648 @default.
- W2739969158 hasConceptScore W2739969158C144024400 @default.
- W2739969158 hasConceptScore W2739969158C149923435 @default.
- W2739969158 hasConceptScore W2739969158C154945302 @default.
- W2739969158 hasConceptScore W2739969158C185592680 @default.
- W2739969158 hasConceptScore W2739969158C2908647359 @default.
- W2739969158 hasConceptScore W2739969158C31266012 @default.
- W2739969158 hasConceptScore W2739969158C41008148 @default.
- W2739969158 hasConceptScore W2739969158C49937458 @default.
- W2739969158 hasConceptScore W2739969158C55493867 @default.
- W2739969158 hasLocation W27399691581 @default.
- W2739969158 hasLocation W27399691582 @default.
- W2739969158 hasLocation W27399691583 @default.
- W2739969158 hasOpenAccess W2739969158 @default.
- W2739969158 hasPrimaryLocation W27399691581 @default.
- W2739969158 hasRelatedWork W1501601012 @default.
- W2739969158 hasRelatedWork W1531732842 @default.
- W2739969158 hasRelatedWork W1936317645 @default.
- W2739969158 hasRelatedWork W2024018837 @default.
- W2739969158 hasRelatedWork W2028251458 @default.
- W2739969158 hasRelatedWork W2104449012 @default.
- W2739969158 hasRelatedWork W2211355040 @default.
- W2739969158 hasRelatedWork W2227252066 @default.
- W2739969158 hasRelatedWork W2305672464 @default.
- W2739969158 hasRelatedWork W4319054059 @default.
- W2739969158 isParatext "false" @default.
- W2739969158 isRetracted "false" @default.
- W2739969158 magId "2739969158" @default.
- W2739969158 workType "book-chapter" @default.