Matches in SemOpenAlex for { <https://semopenalex.org/work/W2740083235> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2740083235 abstract "This paper presents to model the Hebb learning rule and proposes a neuron learning machine (NLM). Hebb learning rule describes the plasticity of the connection between presynaptic and postsynaptic neurons and it is unsupervised itself. It formulates the updating gradient of the connecting weight in artificial neural networks. In this paper, we construct an objective function via modeling the Hebb rule. We make a hypothesis to simplify the model and introduce a correlation based constraint according to the hypothesis and stability of solutions. By analysis from the perspectives of maintaining abstract information and increasing the energy based probability of observed data, we find that this biologically inspired model has the capability of learning useful features. NLM can also be stacked to learn hierarchical features and reformulated into convolutional version to extract features from 2-dimensional data. Experiments on single-layer and deep networks demonstrate the effectiveness of NLM in unsupervised feature learning." @default.
- W2740083235 created "2017-08-08" @default.
- W2740083235 creator A5007404362 @default.
- W2740083235 creator A5012798032 @default.
- W2740083235 creator A5091227928 @default.
- W2740083235 date "2017-08-01" @default.
- W2740083235 modified "2023-09-25" @default.
- W2740083235 title "Modeling Hebb Learning Rule for Unsupervised Learning" @default.
- W2740083235 cites W2059148040 @default.
- W2740083235 cites W2069747869 @default.
- W2740083235 cites W2100495367 @default.
- W2740083235 cites W2108665656 @default.
- W2740083235 cites W2110798204 @default.
- W2740083235 cites W2133257461 @default.
- W2740083235 cites W2140619591 @default.
- W2740083235 cites W2145094598 @default.
- W2740083235 cites W2147062276 @default.
- W2740083235 cites W2163922914 @default.
- W2740083235 cites W2165720259 @default.
- W2740083235 cites W44815768 @default.
- W2740083235 doi "https://doi.org/10.24963/ijcai.2017/322" @default.
- W2740083235 hasPublicationYear "2017" @default.
- W2740083235 type Work @default.
- W2740083235 sameAs 2740083235 @default.
- W2740083235 citedByCount "2" @default.
- W2740083235 countsByYear W27400832352019 @default.
- W2740083235 countsByYear W27400832352022 @default.
- W2740083235 crossrefType "proceedings-article" @default.
- W2740083235 hasAuthorship W2740083235A5007404362 @default.
- W2740083235 hasAuthorship W2740083235A5012798032 @default.
- W2740083235 hasAuthorship W2740083235A5091227928 @default.
- W2740083235 hasBestOaLocation W27400832351 @default.
- W2740083235 hasConcept C108583219 @default.
- W2740083235 hasConcept C111437709 @default.
- W2740083235 hasConcept C112972136 @default.
- W2740083235 hasConcept C117765406 @default.
- W2740083235 hasConcept C119857082 @default.
- W2740083235 hasConcept C138885662 @default.
- W2740083235 hasConcept C153180895 @default.
- W2740083235 hasConcept C154945302 @default.
- W2740083235 hasConcept C17061570 @default.
- W2740083235 hasConcept C2524010 @default.
- W2740083235 hasConcept C2776036281 @default.
- W2740083235 hasConcept C2776401178 @default.
- W2740083235 hasConcept C2779127903 @default.
- W2740083235 hasConcept C33923547 @default.
- W2740083235 hasConcept C41008148 @default.
- W2740083235 hasConcept C41895202 @default.
- W2740083235 hasConcept C50644808 @default.
- W2740083235 hasConcept C66949984 @default.
- W2740083235 hasConcept C8038995 @default.
- W2740083235 hasConcept C97108695 @default.
- W2740083235 hasConceptScore W2740083235C108583219 @default.
- W2740083235 hasConceptScore W2740083235C111437709 @default.
- W2740083235 hasConceptScore W2740083235C112972136 @default.
- W2740083235 hasConceptScore W2740083235C117765406 @default.
- W2740083235 hasConceptScore W2740083235C119857082 @default.
- W2740083235 hasConceptScore W2740083235C138885662 @default.
- W2740083235 hasConceptScore W2740083235C153180895 @default.
- W2740083235 hasConceptScore W2740083235C154945302 @default.
- W2740083235 hasConceptScore W2740083235C17061570 @default.
- W2740083235 hasConceptScore W2740083235C2524010 @default.
- W2740083235 hasConceptScore W2740083235C2776036281 @default.
- W2740083235 hasConceptScore W2740083235C2776401178 @default.
- W2740083235 hasConceptScore W2740083235C2779127903 @default.
- W2740083235 hasConceptScore W2740083235C33923547 @default.
- W2740083235 hasConceptScore W2740083235C41008148 @default.
- W2740083235 hasConceptScore W2740083235C41895202 @default.
- W2740083235 hasConceptScore W2740083235C50644808 @default.
- W2740083235 hasConceptScore W2740083235C66949984 @default.
- W2740083235 hasConceptScore W2740083235C8038995 @default.
- W2740083235 hasConceptScore W2740083235C97108695 @default.
- W2740083235 hasLocation W27400832351 @default.
- W2740083235 hasOpenAccess W2740083235 @default.
- W2740083235 hasPrimaryLocation W27400832351 @default.
- W2740083235 hasRelatedWork W1520894008 @default.
- W2740083235 hasRelatedWork W1523759456 @default.
- W2740083235 hasRelatedWork W1530541224 @default.
- W2740083235 hasRelatedWork W2021234908 @default.
- W2740083235 hasRelatedWork W2170201788 @default.
- W2740083235 hasRelatedWork W2735207540 @default.
- W2740083235 hasRelatedWork W2899454144 @default.
- W2740083235 hasRelatedWork W3123344745 @default.
- W2740083235 hasRelatedWork W4232982293 @default.
- W2740083235 hasRelatedWork W4321853849 @default.
- W2740083235 isParatext "false" @default.
- W2740083235 isRetracted "false" @default.
- W2740083235 magId "2740083235" @default.
- W2740083235 workType "article" @default.