Matches in SemOpenAlex for { <https://semopenalex.org/work/W2740130602> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2740130602 abstract "In this paper, we leverage high-dimensional side information to enhance top-N recommendations. To reduce the impact of the curse of high dimensionality, we incorporate a dimensionality reduction method, Locality Preserving Projection (LPP), into the recommendation model. A joint learning model is proposed to achieve the task of dimensionality reduction and recommendation simultaneously and iteratively. Specifically, item similarities generated by the recommendation model are used as the weights of the adjacency graph for LPP while the projections are used to bias the learning of item similarity. Employing LPP for recommendation not only preserves locality but also improves item similarity. Our experimental results illustrate that the proposed method is superior over state-of-the-art methods." @default.
- W2740130602 created "2017-08-08" @default.
- W2740130602 creator A5014937762 @default.
- W2740130602 creator A5024631418 @default.
- W2740130602 creator A5054510529 @default.
- W2740130602 date "2017-08-07" @default.
- W2740130602 modified "2023-09-28" @default.
- W2740130602 title "Top-N Recommendation with High-Dimensional Side Information via Locality Preserving Projection" @default.
- W2740130602 cites W1987431925 @default.
- W2740130602 cites W2030484290 @default.
- W2740130602 cites W2066642579 @default.
- W2740130602 cites W2082927600 @default.
- W2740130602 cites W2102982709 @default.
- W2740130602 cites W2908054697 @default.
- W2740130602 doi "https://doi.org/10.1145/3077136.3080697" @default.
- W2740130602 hasPublicationYear "2017" @default.
- W2740130602 type Work @default.
- W2740130602 sameAs 2740130602 @default.
- W2740130602 citedByCount "11" @default.
- W2740130602 countsByYear W27401306022017 @default.
- W2740130602 countsByYear W27401306022018 @default.
- W2740130602 countsByYear W27401306022019 @default.
- W2740130602 countsByYear W27401306022020 @default.
- W2740130602 countsByYear W27401306022021 @default.
- W2740130602 crossrefType "proceedings-article" @default.
- W2740130602 hasAuthorship W2740130602A5014937762 @default.
- W2740130602 hasAuthorship W2740130602A5024631418 @default.
- W2740130602 hasAuthorship W2740130602A5054510529 @default.
- W2740130602 hasConcept C11413529 @default.
- W2740130602 hasConcept C138885662 @default.
- W2740130602 hasConcept C154945302 @default.
- W2740130602 hasConcept C2779808786 @default.
- W2740130602 hasConcept C41008148 @default.
- W2740130602 hasConcept C41895202 @default.
- W2740130602 hasConcept C57493831 @default.
- W2740130602 hasConceptScore W2740130602C11413529 @default.
- W2740130602 hasConceptScore W2740130602C138885662 @default.
- W2740130602 hasConceptScore W2740130602C154945302 @default.
- W2740130602 hasConceptScore W2740130602C2779808786 @default.
- W2740130602 hasConceptScore W2740130602C41008148 @default.
- W2740130602 hasConceptScore W2740130602C41895202 @default.
- W2740130602 hasConceptScore W2740130602C57493831 @default.
- W2740130602 hasLocation W27401306021 @default.
- W2740130602 hasOpenAccess W2740130602 @default.
- W2740130602 hasPrimaryLocation W27401306021 @default.
- W2740130602 hasRelatedWork W1498362922 @default.
- W2740130602 hasRelatedWork W1510550274 @default.
- W2740130602 hasRelatedWork W1523525818 @default.
- W2740130602 hasRelatedWork W1548317368 @default.
- W2740130602 hasRelatedWork W1585932355 @default.
- W2740130602 hasRelatedWork W2363648756 @default.
- W2740130602 hasRelatedWork W2381880241 @default.
- W2740130602 hasRelatedWork W2626799276 @default.
- W2740130602 hasRelatedWork W2886384632 @default.
- W2740130602 hasRelatedWork W2972273479 @default.
- W2740130602 isParatext "false" @default.
- W2740130602 isRetracted "false" @default.
- W2740130602 magId "2740130602" @default.
- W2740130602 workType "article" @default.