Matches in SemOpenAlex for { <https://semopenalex.org/work/W2740196585> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2740196585 abstract "Pattern classification and recognition in low-rank distance metric dealing with nonparametric changes is an underlying problem in dynamic environment applications. Data arrives from operational field in a stream model and similarity-based classification algorithms must identify them with acceptable performance. Although, there are adaptive forms of independent feature extraction methods such as principle component analysis (PCA), linear discriminant analysis (LDA) and independent component analysis (ICA) to transform the training patterns to low dimensional space and/or improve the classifiers accuracy, they suffer from nonparametric changes in data over time. This study is devoted to design a data-driven linear transformation to increase the performance of similarity-based classifiers in the presence of nonparametric changes of data over time. For this purpose, a nonparametric multiclass component analysis technique in nonstationary environments is introduced. This generative model enables adaptive similarity-based classifiers to classify time-labeled inquiry pattern with superior accuracy in a low dimensional feature space. In this thesis, an optimal transformation matrix is used to transform the time-labeled instances from original space to a new feature space in order to maximize the probability of selecting the correct class label for incoming instance by similarity-based classifiers. For this purpose, the most probable location of incoming instance for each class is estimated. Then, an optimal transformation matrix is computed by maximizing the information gain at the estimated points. By restricting the transformation matrix to a nonsquare matrix, the dimensions of feature space will be linearly reduced. Experimental results on real and synthesized datasets with real and artificial changes demonstrate the performance of the proposed method in terms of accuracy and dimension reduction in dynamic environments. In the case of real datasets, the proposed method yields 12.16% average misclassification error while the average misclassification error for five different methods GAM, TSY, NWKNN, DWM and FISH is 19.54%. Also, the results of experiments on synthesized datasets show that the proposed method yields 32.83% average misclassification error while average misclassification error of five different methods is 38.78%. From a dimensionality reduction evaluation aspect, the average misclassification error of the proposed method in low-rank feature space is 9.6% and same error rate for three other well-known feature extraction methods is 21.21%. The novelty of the proposed approach resides in the possibility to reduce the dimensions of feature space and simultaneously increase the accuracy of similarity-based classification method in an adaptive fashion in the nonparametric dynamic environment. Consequently, the proposed adaptive feature extraction technique and neighborhood-based classifier family are tightly integrated in an adaptive K-nearest neighbor classifier." @default.
- W2740196585 created "2017-08-08" @default.
- W2740196585 creator A5003189635 @default.
- W2740196585 date "2011-10-01" @default.
- W2740196585 modified "2023-09-27" @default.
- W2740196585 title "Adaptive Similarity Component Analysis in Nonparametric Dynamic Environment" @default.
- W2740196585 hasPublicationYear "2011" @default.
- W2740196585 type Work @default.
- W2740196585 sameAs 2740196585 @default.
- W2740196585 citedByCount "0" @default.
- W2740196585 crossrefType "dissertation" @default.
- W2740196585 hasAuthorship W2740196585A5003189635 @default.
- W2740196585 hasConcept C102366305 @default.
- W2740196585 hasConcept C103278499 @default.
- W2740196585 hasConcept C104317684 @default.
- W2740196585 hasConcept C105795698 @default.
- W2740196585 hasConcept C114614502 @default.
- W2740196585 hasConcept C115961682 @default.
- W2740196585 hasConcept C121332964 @default.
- W2740196585 hasConcept C124101348 @default.
- W2740196585 hasConcept C138885662 @default.
- W2740196585 hasConcept C153180895 @default.
- W2740196585 hasConcept C154945302 @default.
- W2740196585 hasConcept C162324750 @default.
- W2740196585 hasConcept C164226766 @default.
- W2740196585 hasConcept C165443888 @default.
- W2740196585 hasConcept C176217482 @default.
- W2740196585 hasConcept C185592680 @default.
- W2740196585 hasConcept C204241405 @default.
- W2740196585 hasConcept C21547014 @default.
- W2740196585 hasConcept C27438332 @default.
- W2740196585 hasConcept C2776401178 @default.
- W2740196585 hasConcept C33923547 @default.
- W2740196585 hasConcept C39920418 @default.
- W2740196585 hasConcept C41008148 @default.
- W2740196585 hasConcept C41895202 @default.
- W2740196585 hasConcept C55493867 @default.
- W2740196585 hasConcept C69738355 @default.
- W2740196585 hasConcept C74650414 @default.
- W2740196585 hasConcept C83665646 @default.
- W2740196585 hasConceptScore W2740196585C102366305 @default.
- W2740196585 hasConceptScore W2740196585C103278499 @default.
- W2740196585 hasConceptScore W2740196585C104317684 @default.
- W2740196585 hasConceptScore W2740196585C105795698 @default.
- W2740196585 hasConceptScore W2740196585C114614502 @default.
- W2740196585 hasConceptScore W2740196585C115961682 @default.
- W2740196585 hasConceptScore W2740196585C121332964 @default.
- W2740196585 hasConceptScore W2740196585C124101348 @default.
- W2740196585 hasConceptScore W2740196585C138885662 @default.
- W2740196585 hasConceptScore W2740196585C153180895 @default.
- W2740196585 hasConceptScore W2740196585C154945302 @default.
- W2740196585 hasConceptScore W2740196585C162324750 @default.
- W2740196585 hasConceptScore W2740196585C164226766 @default.
- W2740196585 hasConceptScore W2740196585C165443888 @default.
- W2740196585 hasConceptScore W2740196585C176217482 @default.
- W2740196585 hasConceptScore W2740196585C185592680 @default.
- W2740196585 hasConceptScore W2740196585C204241405 @default.
- W2740196585 hasConceptScore W2740196585C21547014 @default.
- W2740196585 hasConceptScore W2740196585C27438332 @default.
- W2740196585 hasConceptScore W2740196585C2776401178 @default.
- W2740196585 hasConceptScore W2740196585C33923547 @default.
- W2740196585 hasConceptScore W2740196585C39920418 @default.
- W2740196585 hasConceptScore W2740196585C41008148 @default.
- W2740196585 hasConceptScore W2740196585C41895202 @default.
- W2740196585 hasConceptScore W2740196585C55493867 @default.
- W2740196585 hasConceptScore W2740196585C69738355 @default.
- W2740196585 hasConceptScore W2740196585C74650414 @default.
- W2740196585 hasConceptScore W2740196585C83665646 @default.
- W2740196585 hasLocation W27401965851 @default.
- W2740196585 hasOpenAccess W2740196585 @default.
- W2740196585 hasPrimaryLocation W27401965851 @default.
- W2740196585 hasRelatedWork W1582278576 @default.
- W2740196585 hasRelatedWork W1673021977 @default.
- W2740196585 hasRelatedWork W2034371392 @default.
- W2740196585 hasRelatedWork W2043957006 @default.
- W2740196585 hasRelatedWork W2049721117 @default.
- W2740196585 hasRelatedWork W2055596845 @default.
- W2740196585 hasRelatedWork W2095012714 @default.
- W2740196585 hasRelatedWork W2100468749 @default.
- W2740196585 hasRelatedWork W2139425886 @default.
- W2740196585 hasRelatedWork W252141150 @default.
- W2740196585 hasRelatedWork W2589865066 @default.
- W2740196585 hasRelatedWork W2590286530 @default.
- W2740196585 hasRelatedWork W2768215044 @default.
- W2740196585 hasRelatedWork W2768696672 @default.
- W2740196585 hasRelatedWork W2916179757 @default.
- W2740196585 hasRelatedWork W2949130312 @default.
- W2740196585 hasRelatedWork W2964138195 @default.
- W2740196585 hasRelatedWork W2964612249 @default.
- W2740196585 hasRelatedWork W2969565428 @default.
- W2740196585 hasRelatedWork W3143218101 @default.
- W2740196585 isParatext "false" @default.
- W2740196585 isRetracted "false" @default.
- W2740196585 magId "2740196585" @default.
- W2740196585 workType "dissertation" @default.