Matches in SemOpenAlex for { <https://semopenalex.org/work/W2740204504> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2740204504 endingPage "254" @default.
- W2740204504 startingPage "247" @default.
- W2740204504 abstract "Leonhard Euler was the first to use “L-functions” to get number-theoretic results when he showed that infinitely many primes exist by proving that the series of reciprocals of primes diverges. P G L Dirichlet then used this approach to prove infinitude of primes in arithmetic progression by considering the L-series associated to a Dirichlet character. (Incidentally, it was Dirichlet who used the letter “L” (for Lejune?) to denote the series he used.)" @default.
- W2740204504 created "2017-08-08" @default.
- W2740204504 creator A5070931232 @default.
- W2740204504 date "2003-01-01" @default.
- W2740204504 modified "2023-09-27" @default.
- W2740204504 title "L-Functions of modular forms" @default.
- W2740204504 cites W1976379494 @default.
- W2740204504 cites W2008031511 @default.
- W2740204504 cites W2071624340 @default.
- W2740204504 cites W4210871175 @default.
- W2740204504 doi "https://doi.org/10.1007/978-93-86279-15-6_17" @default.
- W2740204504 hasPublicationYear "2003" @default.
- W2740204504 type Work @default.
- W2740204504 sameAs 2740204504 @default.
- W2740204504 citedByCount "0" @default.
- W2740204504 crossrefType "book-chapter" @default.
- W2740204504 hasAuthorship W2740204504A5070931232 @default.
- W2740204504 hasConcept C134306372 @default.
- W2740204504 hasConcept C136119220 @default.
- W2740204504 hasConcept C143724316 @default.
- W2740204504 hasConcept C149381693 @default.
- W2740204504 hasConcept C151730666 @default.
- W2740204504 hasConcept C169214877 @default.
- W2740204504 hasConcept C182310444 @default.
- W2740204504 hasConcept C202444582 @default.
- W2740204504 hasConcept C207803063 @default.
- W2740204504 hasConcept C2524010 @default.
- W2740204504 hasConcept C2780861071 @default.
- W2740204504 hasConcept C33923547 @default.
- W2740204504 hasConcept C62884695 @default.
- W2740204504 hasConcept C75764964 @default.
- W2740204504 hasConcept C86803240 @default.
- W2740204504 hasConcept C94375191 @default.
- W2740204504 hasConceptScore W2740204504C134306372 @default.
- W2740204504 hasConceptScore W2740204504C136119220 @default.
- W2740204504 hasConceptScore W2740204504C143724316 @default.
- W2740204504 hasConceptScore W2740204504C149381693 @default.
- W2740204504 hasConceptScore W2740204504C151730666 @default.
- W2740204504 hasConceptScore W2740204504C169214877 @default.
- W2740204504 hasConceptScore W2740204504C182310444 @default.
- W2740204504 hasConceptScore W2740204504C202444582 @default.
- W2740204504 hasConceptScore W2740204504C207803063 @default.
- W2740204504 hasConceptScore W2740204504C2524010 @default.
- W2740204504 hasConceptScore W2740204504C2780861071 @default.
- W2740204504 hasConceptScore W2740204504C33923547 @default.
- W2740204504 hasConceptScore W2740204504C62884695 @default.
- W2740204504 hasConceptScore W2740204504C75764964 @default.
- W2740204504 hasConceptScore W2740204504C86803240 @default.
- W2740204504 hasConceptScore W2740204504C94375191 @default.
- W2740204504 hasLocation W27402045041 @default.
- W2740204504 hasOpenAccess W2740204504 @default.
- W2740204504 hasPrimaryLocation W27402045041 @default.
- W2740204504 hasRelatedWork W1480585918 @default.
- W2740204504 hasRelatedWork W1578418267 @default.
- W2740204504 hasRelatedWork W1653927566 @default.
- W2740204504 hasRelatedWork W1973483606 @default.
- W2740204504 hasRelatedWork W2113810212 @default.
- W2740204504 hasRelatedWork W2889921003 @default.
- W2740204504 hasRelatedWork W2949519112 @default.
- W2740204504 hasRelatedWork W3100575188 @default.
- W2740204504 hasRelatedWork W4237935946 @default.
- W2740204504 hasRelatedWork W4298028196 @default.
- W2740204504 isParatext "false" @default.
- W2740204504 isRetracted "false" @default.
- W2740204504 magId "2740204504" @default.
- W2740204504 workType "book-chapter" @default.