Matches in SemOpenAlex for { <https://semopenalex.org/work/W2740406916> ?p ?o ?g. }
- W2740406916 endingPage "7681" @default.
- W2740406916 startingPage "7659" @default.
- W2740406916 abstract "RaySearch Americas Inc. (NY) has introduced a commercial Monte Carlo dose algorithm (RS-MC) for routine clinical use in proton spot scanning. In this report, we provide a validation of this algorithm against phantom measurements and simulations in the GATE software package. We also compared the performance of the RayStation analytical algorithm (RS-PBA) against the RS-MC algorithm. A beam model (G-MC) for a spot scanning gantry at our proton center was implemented in the GATE software package. The model was validated against measurements in a water phantom and was used for benchmarking the RS-MC. Validation of the RS-MC was performed in a water phantom by measuring depth doses and profiles for three spread-out Bragg peak (SOBP) beams with normal incidence, an SOBP with oblique incidence, and an SOBP with a range shifter and large air gap. The RS-MC was also validated against measurements and simulations in heterogeneous phantoms created by placing lung or bone slabs in a water phantom. Lateral dose profiles near the distal end of the beam were measured with a microDiamond detector and compared to the G-MC simulations, RS-MC and RS-PBA. Finally, the RS-MC and RS-PBA were validated against measured dose distributions in an Alderson-Rando (AR) phantom. Measurements were made using Gafchromic film in the AR phantom and compared to doses using the RS-PBA and RS-MC algorithms. For SOBP depth doses in a water phantom, all three algorithms matched the measurements to within ±3% at all points and a range within 1 mm. The RS-PBA algorithm showed up to a 10% difference in dose at the entrance for the beam with a range shifter and >30 cm air gap, while the RS-MC and G-MC were always within 3% of the measurement. For an oblique beam incident at 45°, the RS-PBA algorithm showed up to 6% local dose differences and broadening of distal fall-off by 5 mm. Both the RS-MC and G-MC accurately predicted the depth dose to within ±3% and distal fall-off to within 2 mm. In an anthropomorphic phantom, the gamma index (dose tolerance = 3%, distance-to-agreement = 3 mm) was greater than 90% for six out of seven planes using the RS-MC, and three out seven for the RS-PBA. The RS-MC algorithm demonstrated improved dosimetric accuracy over the RS-PBA in the presence of homogenous, heterogeneous and anthropomorphic phantoms. The computation performance of the RS-MC was similar to the RS-PBA algorithm. For complex disease sites like breast, head and neck, and lung cancer, the RS-MC algorithm will provide significantly more accurate treatment planning." @default.
- W2740406916 created "2017-08-08" @default.
- W2740406916 creator A5016668634 @default.
- W2740406916 creator A5016864113 @default.
- W2740406916 creator A5026457373 @default.
- W2740406916 creator A5040841422 @default.
- W2740406916 creator A5041818448 @default.
- W2740406916 creator A5054574558 @default.
- W2740406916 creator A5080374314 @default.
- W2740406916 creator A5090092475 @default.
- W2740406916 date "2017-09-12" @default.
- W2740406916 modified "2023-10-03" @default.
- W2740406916 title "Dosimetric evaluation of a commercial proton spot scanning Monte-Carlo dose algorithm: comparisons against measurements and simulations" @default.
- W2740406916 cites W1207552156 @default.
- W2740406916 cites W1832353214 @default.
- W2740406916 cites W1967121735 @default.
- W2740406916 cites W1972096864 @default.
- W2740406916 cites W1990869665 @default.
- W2740406916 cites W1994053519 @default.
- W2740406916 cites W1997446661 @default.
- W2740406916 cites W1999189079 @default.
- W2740406916 cites W2001064878 @default.
- W2740406916 cites W2003043687 @default.
- W2740406916 cites W2005348841 @default.
- W2740406916 cites W2022985124 @default.
- W2740406916 cites W2028425697 @default.
- W2740406916 cites W2029148316 @default.
- W2740406916 cites W2030544564 @default.
- W2740406916 cites W2038196526 @default.
- W2740406916 cites W2048731429 @default.
- W2740406916 cites W2076139133 @default.
- W2740406916 cites W2080634330 @default.
- W2740406916 cites W2082700018 @default.
- W2740406916 cites W2093338140 @default.
- W2740406916 cites W2115661048 @default.
- W2740406916 cites W2128158076 @default.
- W2740406916 cites W2138884296 @default.
- W2740406916 cites W2145700610 @default.
- W2740406916 cites W2283756064 @default.
- W2740406916 cites W2467491704 @default.
- W2740406916 cites W2564107049 @default.
- W2740406916 doi "https://doi.org/10.1088/1361-6560/aa82a5" @default.
- W2740406916 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28749373" @default.
- W2740406916 hasPublicationYear "2017" @default.
- W2740406916 type Work @default.
- W2740406916 sameAs 2740406916 @default.
- W2740406916 citedByCount "101" @default.
- W2740406916 countsByYear W27404069162017 @default.
- W2740406916 countsByYear W27404069162018 @default.
- W2740406916 countsByYear W27404069162019 @default.
- W2740406916 countsByYear W27404069162020 @default.
- W2740406916 countsByYear W27404069162021 @default.
- W2740406916 countsByYear W27404069162022 @default.
- W2740406916 countsByYear W27404069162023 @default.
- W2740406916 crossrefType "journal-article" @default.
- W2740406916 hasAuthorship W2740406916A5016668634 @default.
- W2740406916 hasAuthorship W2740406916A5016864113 @default.
- W2740406916 hasAuthorship W2740406916A5026457373 @default.
- W2740406916 hasAuthorship W2740406916A5040841422 @default.
- W2740406916 hasAuthorship W2740406916A5041818448 @default.
- W2740406916 hasAuthorship W2740406916A5054574558 @default.
- W2740406916 hasAuthorship W2740406916A5080374314 @default.
- W2740406916 hasAuthorship W2740406916A5090092475 @default.
- W2740406916 hasConcept C104293457 @default.
- W2740406916 hasConcept C105795698 @default.
- W2740406916 hasConcept C11413529 @default.
- W2740406916 hasConcept C120665830 @default.
- W2740406916 hasConcept C121332964 @default.
- W2740406916 hasConcept C136229726 @default.
- W2740406916 hasConcept C145148216 @default.
- W2740406916 hasConcept C151770136 @default.
- W2740406916 hasConcept C168834538 @default.
- W2740406916 hasConcept C192562407 @default.
- W2740406916 hasConcept C19499675 @default.
- W2740406916 hasConcept C198291218 @default.
- W2740406916 hasConcept C2779244869 @default.
- W2740406916 hasConcept C2780944729 @default.
- W2740406916 hasConcept C2781298738 @default.
- W2740406916 hasConcept C2989005 @default.
- W2740406916 hasConcept C33923547 @default.
- W2740406916 hasConcept C41008148 @default.
- W2740406916 hasConcept C62520636 @default.
- W2740406916 hasConcept C71924100 @default.
- W2740406916 hasConceptScore W2740406916C104293457 @default.
- W2740406916 hasConceptScore W2740406916C105795698 @default.
- W2740406916 hasConceptScore W2740406916C11413529 @default.
- W2740406916 hasConceptScore W2740406916C120665830 @default.
- W2740406916 hasConceptScore W2740406916C121332964 @default.
- W2740406916 hasConceptScore W2740406916C136229726 @default.
- W2740406916 hasConceptScore W2740406916C145148216 @default.
- W2740406916 hasConceptScore W2740406916C151770136 @default.
- W2740406916 hasConceptScore W2740406916C168834538 @default.
- W2740406916 hasConceptScore W2740406916C192562407 @default.
- W2740406916 hasConceptScore W2740406916C19499675 @default.
- W2740406916 hasConceptScore W2740406916C198291218 @default.
- W2740406916 hasConceptScore W2740406916C2779244869 @default.
- W2740406916 hasConceptScore W2740406916C2780944729 @default.
- W2740406916 hasConceptScore W2740406916C2781298738 @default.