Matches in SemOpenAlex for { <https://semopenalex.org/work/W2740458082> ?p ?o ?g. }
- W2740458082 endingPage "270" @default.
- W2740458082 startingPage "265" @default.
- W2740458082 abstract "Productivity prediction of a software engineer is necessary to determine whether corrective actions are needed and to identify improvement options to produce better results. It can be performed from abstraction levels such as organisation, team project, individual project, or task. Software engineering education and training has approached its efforts at individual level. In this study, the authors propose the application of a data mining technique named support vector regression (SVR) to predict the productivity of individuals (i.e. graduate students). Its prediction accuracy was compared with that of a statistical regression model, and with those of two neural networks. After applying a Wilcoxon statistical test, results suggest that an SVR with linear kernel using new and changed lines of code, and programming language experience as independent variables, could be used for predicting the individual productivity of a higher education graduate student, when software projects coded in either Java or C++ programming languages, have been developed by following a disciplined process specifically proposed for academic environments." @default.
- W2740458082 created "2017-08-08" @default.
- W2740458082 creator A5018662615 @default.
- W2740458082 creator A5054910281 @default.
- W2740458082 creator A5057297280 @default.
- W2740458082 date "2017-10-01" @default.
- W2740458082 modified "2023-09-26" @default.
- W2740458082 title "Support vector regression for predicting the productivity of higher education graduate students from individually developed software projects" @default.
- W2740458082 cites W1523100500 @default.
- W2740458082 cites W1964357740 @default.
- W2740458082 cites W1982160761 @default.
- W2740458082 cites W1994885765 @default.
- W2740458082 cites W2003042352 @default.
- W2740458082 cites W2006750785 @default.
- W2740458082 cites W2021565261 @default.
- W2740458082 cites W2032375313 @default.
- W2740458082 cites W2036259709 @default.
- W2740458082 cites W2063315020 @default.
- W2740458082 cites W2073128029 @default.
- W2740458082 cites W2079104416 @default.
- W2740458082 cites W2087347434 @default.
- W2740458082 cites W2121069620 @default.
- W2740458082 cites W2124271421 @default.
- W2740458082 cites W2134407776 @default.
- W2740458082 cites W2141159593 @default.
- W2740458082 cites W2153635508 @default.
- W2740458082 cites W2161920802 @default.
- W2740458082 cites W2162430279 @default.
- W2740458082 cites W2163004671 @default.
- W2740458082 cites W2271240940 @default.
- W2740458082 cites W2294521126 @default.
- W2740458082 cites W2320402018 @default.
- W2740458082 cites W2377470355 @default.
- W2740458082 cites W2488392827 @default.
- W2740458082 cites W2523529832 @default.
- W2740458082 cites W2530601278 @default.
- W2740458082 cites W3112464194 @default.
- W2740458082 cites W409166618 @default.
- W2740458082 cites W4230410938 @default.
- W2740458082 cites W4238015413 @default.
- W2740458082 cites W4239510810 @default.
- W2740458082 cites W4244781008 @default.
- W2740458082 cites W800815742 @default.
- W2740458082 doi "https://doi.org/10.1049/iet-sen.2016.0304" @default.
- W2740458082 hasPublicationYear "2017" @default.
- W2740458082 type Work @default.
- W2740458082 sameAs 2740458082 @default.
- W2740458082 citedByCount "6" @default.
- W2740458082 countsByYear W27404580822019 @default.
- W2740458082 countsByYear W27404580822020 @default.
- W2740458082 countsByYear W27404580822021 @default.
- W2740458082 crossrefType "journal-article" @default.
- W2740458082 hasAuthorship W2740458082A5018662615 @default.
- W2740458082 hasAuthorship W2740458082A5054910281 @default.
- W2740458082 hasAuthorship W2740458082A5057297280 @default.
- W2740458082 hasConcept C111472728 @default.
- W2740458082 hasConcept C115903868 @default.
- W2740458082 hasConcept C119857082 @default.
- W2740458082 hasConcept C12267149 @default.
- W2740458082 hasConcept C124304363 @default.
- W2740458082 hasConcept C127413603 @default.
- W2740458082 hasConcept C138885662 @default.
- W2740458082 hasConcept C139719470 @default.
- W2740458082 hasConcept C152877465 @default.
- W2740458082 hasConcept C154945302 @default.
- W2740458082 hasConcept C15744967 @default.
- W2740458082 hasConcept C161821725 @default.
- W2740458082 hasConcept C162324750 @default.
- W2740458082 hasConcept C186846655 @default.
- W2740458082 hasConcept C19417346 @default.
- W2740458082 hasConcept C199360897 @default.
- W2740458082 hasConcept C201995342 @default.
- W2740458082 hasConcept C204983608 @default.
- W2740458082 hasConcept C206041023 @default.
- W2740458082 hasConcept C2777904410 @default.
- W2740458082 hasConcept C2780451532 @default.
- W2740458082 hasConcept C2908586218 @default.
- W2740458082 hasConcept C41008148 @default.
- W2740458082 hasConcept C47177190 @default.
- W2740458082 hasConcept C529173508 @default.
- W2740458082 hasConcept C548217200 @default.
- W2740458082 hasConceptScore W2740458082C111472728 @default.
- W2740458082 hasConceptScore W2740458082C115903868 @default.
- W2740458082 hasConceptScore W2740458082C119857082 @default.
- W2740458082 hasConceptScore W2740458082C12267149 @default.
- W2740458082 hasConceptScore W2740458082C124304363 @default.
- W2740458082 hasConceptScore W2740458082C127413603 @default.
- W2740458082 hasConceptScore W2740458082C138885662 @default.
- W2740458082 hasConceptScore W2740458082C139719470 @default.
- W2740458082 hasConceptScore W2740458082C152877465 @default.
- W2740458082 hasConceptScore W2740458082C154945302 @default.
- W2740458082 hasConceptScore W2740458082C15744967 @default.
- W2740458082 hasConceptScore W2740458082C161821725 @default.
- W2740458082 hasConceptScore W2740458082C162324750 @default.
- W2740458082 hasConceptScore W2740458082C186846655 @default.
- W2740458082 hasConceptScore W2740458082C19417346 @default.
- W2740458082 hasConceptScore W2740458082C199360897 @default.
- W2740458082 hasConceptScore W2740458082C201995342 @default.