Matches in SemOpenAlex for { <https://semopenalex.org/work/W2740489634> ?p ?o ?g. }
- W2740489634 endingPage "1955" @default.
- W2740489634 startingPage "1942" @default.
- W2740489634 abstract "Spoofing detection for automatic speaker verification (ASV) aims to discriminate between genuine and spoofed speech. This topic has received increased attentions recently due to safety concerns with deploying an ASV system. While the performance of spoofing detection has improved significantly in clean condition in recent studies, the performance degrades dramatically in noisy conditions. To address this issue, in this paper, we propose to extract robust and discriminative deep features by using deep learning techniques for spoofing detection. In particular, we employ deep feedforward, recurrent, and convolutional neural networks to extract discriminative features. We also introduce multicondition training, noise-aware training, and annealed dropout training to make neural networks more robust against noise and to avoid overfitting to specific spoofing attacks and noise types. The proposed neural networks and training techniques are combined into a single framework for spoofing detection. Experimental evaluation is carried out on a noisy version of the standard ASVspoof 2015 corpus, including both additive noisy and reverberant scenarios. Experimental results confirm that the proposed system dramatically decreases averaged equal error rates from 19.1% and 22.6% to 3.2% and 5.1% for seen and unseen noisy conditions, respectively." @default.
- W2740489634 created "2017-08-08" @default.
- W2740489634 creator A5009522499 @default.
- W2740489634 creator A5015824704 @default.
- W2740489634 creator A5071702566 @default.
- W2740489634 creator A5080154283 @default.
- W2740489634 date "2017-10-01" @default.
- W2740489634 modified "2023-10-17" @default.
- W2740489634 title "Deep Feature Engineering for Noise Robust Spoofing Detection" @default.
- W2740489634 cites W1006777433 @default.
- W2740489634 cites W1490120479 @default.
- W2740489634 cites W1974387177 @default.
- W2740489634 cites W1979482308 @default.
- W2740489634 cites W1992475611 @default.
- W2740489634 cites W2012897754 @default.
- W2740489634 cites W2028706510 @default.
- W2740489634 cites W2033310064 @default.
- W2740489634 cites W2046056978 @default.
- W2740489634 cites W2053019885 @default.
- W2740489634 cites W2062164080 @default.
- W2740489634 cites W2062703747 @default.
- W2740489634 cites W2079735306 @default.
- W2740489634 cites W2089917322 @default.
- W2740489634 cites W2114376863 @default.
- W2740489634 cites W2121061347 @default.
- W2740489634 cites W2121415728 @default.
- W2740489634 cites W2123299109 @default.
- W2740489634 cites W2127982613 @default.
- W2740489634 cites W2129379984 @default.
- W2740489634 cites W2131734706 @default.
- W2740489634 cites W2136439176 @default.
- W2740489634 cites W2150769028 @default.
- W2740489634 cites W2150962366 @default.
- W2740489634 cites W2160815625 @default.
- W2740489634 cites W2163922914 @default.
- W2740489634 cites W2198724430 @default.
- W2740489634 cites W2297648422 @default.
- W2740489634 cites W2303197844 @default.
- W2740489634 cites W2402922286 @default.
- W2740489634 cites W2405524873 @default.
- W2740489634 cites W2406264770 @default.
- W2740489634 cites W2483721152 @default.
- W2740489634 cites W2491899193 @default.
- W2740489634 cites W2512302098 @default.
- W2740489634 cites W2515753980 @default.
- W2740489634 cites W2533075636 @default.
- W2740489634 cites W2576165910 @default.
- W2740489634 cites W2587717635 @default.
- W2740489634 doi "https://doi.org/10.1109/taslp.2017.2732162" @default.
- W2740489634 hasPublicationYear "2017" @default.
- W2740489634 type Work @default.
- W2740489634 sameAs 2740489634 @default.
- W2740489634 citedByCount "24" @default.
- W2740489634 countsByYear W27404896342018 @default.
- W2740489634 countsByYear W27404896342019 @default.
- W2740489634 countsByYear W27404896342020 @default.
- W2740489634 countsByYear W27404896342021 @default.
- W2740489634 countsByYear W27404896342022 @default.
- W2740489634 countsByYear W27404896342023 @default.
- W2740489634 crossrefType "journal-article" @default.
- W2740489634 hasAuthorship W2740489634A5009522499 @default.
- W2740489634 hasAuthorship W2740489634A5015824704 @default.
- W2740489634 hasAuthorship W2740489634A5071702566 @default.
- W2740489634 hasAuthorship W2740489634A5080154283 @default.
- W2740489634 hasConcept C108583219 @default.
- W2740489634 hasConcept C115961682 @default.
- W2740489634 hasConcept C119857082 @default.
- W2740489634 hasConcept C138885662 @default.
- W2740489634 hasConcept C153180895 @default.
- W2740489634 hasConcept C154945302 @default.
- W2740489634 hasConcept C167900197 @default.
- W2740489634 hasConcept C22019652 @default.
- W2740489634 hasConcept C2776145597 @default.
- W2740489634 hasConcept C2776401178 @default.
- W2740489634 hasConcept C28490314 @default.
- W2740489634 hasConcept C2984842247 @default.
- W2740489634 hasConcept C38652104 @default.
- W2740489634 hasConcept C41008148 @default.
- W2740489634 hasConcept C41895202 @default.
- W2740489634 hasConcept C50644808 @default.
- W2740489634 hasConcept C81363708 @default.
- W2740489634 hasConcept C97931131 @default.
- W2740489634 hasConcept C99498987 @default.
- W2740489634 hasConceptScore W2740489634C108583219 @default.
- W2740489634 hasConceptScore W2740489634C115961682 @default.
- W2740489634 hasConceptScore W2740489634C119857082 @default.
- W2740489634 hasConceptScore W2740489634C138885662 @default.
- W2740489634 hasConceptScore W2740489634C153180895 @default.
- W2740489634 hasConceptScore W2740489634C154945302 @default.
- W2740489634 hasConceptScore W2740489634C167900197 @default.
- W2740489634 hasConceptScore W2740489634C22019652 @default.
- W2740489634 hasConceptScore W2740489634C2776145597 @default.
- W2740489634 hasConceptScore W2740489634C2776401178 @default.
- W2740489634 hasConceptScore W2740489634C28490314 @default.
- W2740489634 hasConceptScore W2740489634C2984842247 @default.
- W2740489634 hasConceptScore W2740489634C38652104 @default.
- W2740489634 hasConceptScore W2740489634C41008148 @default.
- W2740489634 hasConceptScore W2740489634C41895202 @default.