Matches in SemOpenAlex for { <https://semopenalex.org/work/W2740803515> ?p ?o ?g. }
- W2740803515 endingPage "919" @default.
- W2740803515 startingPage "897" @default.
- W2740803515 abstract "Most 5-D interpolation and regularization techniques reconstruct the missing data in the frequency domain by using mathematical transforms. An alternative type of interpolation methods uses wave-front attributes, that is, quantities with a specific physical meaning like the angle of emergence and wave-front curvatures. In these attributes structural information of subsurface features like dip and strike of a reflector are included. These wave-front attributes work on 5-D data space (e.g. common-midpoint coordinates in x and y, offset, azimuth and time), leading to a 5-D interpolation technique. Since the process is based on stacking next to the interpolation a pre-stack data enhancement is achieved, improving the signal-to-noise ratio (S/N) of interpolated and recorded traces. The wave-front attributes are determined in a data-driven fashion, for example, with the Common Reflection Surface (CRS method). As one of the wave-front-attribute-based interpolation techniques, the 3-D partial CRS method was proposed to enhance the quality of 3-D pre-stack data with low S/N. In the past work on 3-D partial stacks, two potential problems were still unsolved. For high-quality wave-front attributes, we suggest a global optimization strategy instead of the so far used pragmatic search approach. In previous works, the interpolation of 3-D data was performed along a specific azimuth which is acceptable for narrow azimuth acquisition but does not exploit the potential of wide-, rich- or full-azimuth acquisitions. The conventional 3-D partial CRS method is improved in this work and we call it as a wave-front-attribute-based 5-D interpolation (5-D WABI) as the two problems mentioned above are addressed. Data examples demonstrate the improved performance by the 5-D WABI method when compared with the conventional 3-D partial CRS approach. A comparison of the rank-reduction-based 5-D seismic interpolation technique with the proposed 5-D WABI method is given. The comparison reveals that there are significant advantages for steep dipping events using the 5-D WABI method when compared to the rank-reduction-based 5-D interpolation technique. Diffraction tails substantially benefit from this improved performance of the partial CRS stacking approach while the CPU time is comparable to the CPU time consumed by the rank-reduction-based method." @default.
- W2740803515 created "2017-08-08" @default.
- W2740803515 creator A5025232637 @default.
- W2740803515 creator A5051410670 @default.
- W2740803515 date "2017-08-02" @default.
- W2740803515 modified "2023-09-27" @default.
- W2740803515 title "5-D interpolation with wave-front attributes" @default.
- W2740803515 cites W1595159159 @default.
- W2740803515 cites W1922005389 @default.
- W2740803515 cites W1967340072 @default.
- W2740803515 cites W1981607562 @default.
- W2740803515 cites W1990498189 @default.
- W2740803515 cites W1995726128 @default.
- W2740803515 cites W2000479301 @default.
- W2740803515 cites W2008341810 @default.
- W2740803515 cites W2011499662 @default.
- W2740803515 cites W2037139093 @default.
- W2740803515 cites W2038136655 @default.
- W2740803515 cites W2041176335 @default.
- W2740803515 cites W2050296900 @default.
- W2740803515 cites W2053610349 @default.
- W2740803515 cites W2064423076 @default.
- W2740803515 cites W2066522930 @default.
- W2740803515 cites W2066539310 @default.
- W2740803515 cites W2073143379 @default.
- W2740803515 cites W2083907669 @default.
- W2740803515 cites W2099345956 @default.
- W2740803515 cites W2099925443 @default.
- W2740803515 cites W2105747719 @default.
- W2740803515 cites W2106295515 @default.
- W2740803515 cites W2108437294 @default.
- W2740803515 cites W2109355214 @default.
- W2740803515 cites W2114013702 @default.
- W2740803515 cites W2120722998 @default.
- W2740803515 cites W2124769970 @default.
- W2740803515 cites W2125329377 @default.
- W2740803515 cites W2133050714 @default.
- W2740803515 cites W2134260640 @default.
- W2740803515 cites W2136574244 @default.
- W2740803515 cites W2141953966 @default.
- W2740803515 cites W2142192015 @default.
- W2740803515 cites W2146305038 @default.
- W2740803515 cites W2149507090 @default.
- W2740803515 cites W2151179383 @default.
- W2740803515 cites W2152311105 @default.
- W2740803515 cites W2168396269 @default.
- W2740803515 cites W2191895947 @default.
- W2740803515 cites W2463531433 @default.
- W2740803515 cites W2468203014 @default.
- W2740803515 cites W2605716678 @default.
- W2740803515 doi "https://doi.org/10.1093/gji/ggx334" @default.
- W2740803515 hasPublicationYear "2017" @default.
- W2740803515 type Work @default.
- W2740803515 sameAs 2740803515 @default.
- W2740803515 citedByCount "24" @default.
- W2740803515 countsByYear W27408035152018 @default.
- W2740803515 countsByYear W27408035152019 @default.
- W2740803515 countsByYear W27408035152020 @default.
- W2740803515 countsByYear W27408035152021 @default.
- W2740803515 countsByYear W27408035152022 @default.
- W2740803515 countsByYear W27408035152023 @default.
- W2740803515 crossrefType "journal-article" @default.
- W2740803515 hasAuthorship W2740803515A5025232637 @default.
- W2740803515 hasAuthorship W2740803515A5051410670 @default.
- W2740803515 hasConcept C11413529 @default.
- W2740803515 hasConcept C115961682 @default.
- W2740803515 hasConcept C119857082 @default.
- W2740803515 hasConcept C120665830 @default.
- W2740803515 hasConcept C121332964 @default.
- W2740803515 hasConcept C127313418 @default.
- W2740803515 hasConcept C137800194 @default.
- W2740803515 hasConcept C154945302 @default.
- W2740803515 hasConcept C159737794 @default.
- W2740803515 hasConcept C165699331 @default.
- W2740803515 hasConcept C175291020 @default.
- W2740803515 hasConcept C199360897 @default.
- W2740803515 hasConcept C2524010 @default.
- W2740803515 hasConcept C33923547 @default.
- W2740803515 hasConcept C41008148 @default.
- W2740803515 hasConcept C9357733 @default.
- W2740803515 hasConceptScore W2740803515C11413529 @default.
- W2740803515 hasConceptScore W2740803515C115961682 @default.
- W2740803515 hasConceptScore W2740803515C119857082 @default.
- W2740803515 hasConceptScore W2740803515C120665830 @default.
- W2740803515 hasConceptScore W2740803515C121332964 @default.
- W2740803515 hasConceptScore W2740803515C127313418 @default.
- W2740803515 hasConceptScore W2740803515C137800194 @default.
- W2740803515 hasConceptScore W2740803515C154945302 @default.
- W2740803515 hasConceptScore W2740803515C159737794 @default.
- W2740803515 hasConceptScore W2740803515C165699331 @default.
- W2740803515 hasConceptScore W2740803515C175291020 @default.
- W2740803515 hasConceptScore W2740803515C199360897 @default.
- W2740803515 hasConceptScore W2740803515C2524010 @default.
- W2740803515 hasConceptScore W2740803515C33923547 @default.
- W2740803515 hasConceptScore W2740803515C41008148 @default.
- W2740803515 hasConceptScore W2740803515C9357733 @default.
- W2740803515 hasIssue "2" @default.
- W2740803515 hasLocation W27408035151 @default.