Matches in SemOpenAlex for { <https://semopenalex.org/work/W2740898088> ?p ?o ?g. }
- W2740898088 endingPage "805" @default.
- W2740898088 startingPage "799" @default.
- W2740898088 abstract "It is a daunting task to eradicate tuberculosis completely in Heng County due to a large transient population, human immunodeficiency virus/tuberculosis coinfection, and latent infection. Thus, a high-precision forecasting model can be used for the prevention and control of tuberculosis. In this study, four models including a basic autoregressive integrated moving average (ARIMA) model, a traditional ARIMA-generalized regression neural network (GRNN) model, a basic GRNN model, and a new ARIMA-GRNN hybrid model were used to fit and predict the incidence of tuberculosis. Parameters including mean absolute error (MAE), mean absolute percentage error (MAPE), and mean square error (MSE) were used to evaluate and compare the performance of these models for fitting historical and prospective data. The new ARIMA-GRNN model had superior fit relative to both the traditional ARIMA-GRNN model and basic ARIMA model when applied to historical data and when used as a predictive model for forecasting incidence during the subsequent 6 months. Our results suggest that the new ARIMA-GRNN model may be more suitable for forecasting the tuberculosis incidence in Heng County than traditional models." @default.
- W2740898088 created "2017-08-08" @default.
- W2740898088 creator A5013973657 @default.
- W2740898088 creator A5014107541 @default.
- W2740898088 creator A5019786059 @default.
- W2740898088 creator A5029741432 @default.
- W2740898088 creator A5031888627 @default.
- W2740898088 creator A5032787375 @default.
- W2740898088 creator A5033829154 @default.
- W2740898088 creator A5046890346 @default.
- W2740898088 creator A5052098633 @default.
- W2740898088 creator A5052980492 @default.
- W2740898088 creator A5059212207 @default.
- W2740898088 creator A5070028057 @default.
- W2740898088 creator A5086185132 @default.
- W2740898088 creator A5087226997 @default.
- W2740898088 creator A5088363022 @default.
- W2740898088 date "2017-09-07" @default.
- W2740898088 modified "2023-09-23" @default.
- W2740898088 title "A New Hybrid Model Using an Autoregressive Integrated Moving Average and a Generalized Regression Neural Network for the Incidence of Tuberculosis in Heng County, China" @default.
- W2740898088 cites W1528886954 @default.
- W2740898088 cites W1943422095 @default.
- W2740898088 cites W1966416787 @default.
- W2740898088 cites W1997281913 @default.
- W2740898088 cites W1997298766 @default.
- W2740898088 cites W1999863729 @default.
- W2740898088 cites W2002667857 @default.
- W2740898088 cites W2029219854 @default.
- W2740898088 cites W2045145220 @default.
- W2740898088 cites W2061322999 @default.
- W2740898088 cites W2061873900 @default.
- W2740898088 cites W2074087122 @default.
- W2740898088 cites W2091287374 @default.
- W2740898088 cites W2115811963 @default.
- W2740898088 cites W2126786066 @default.
- W2740898088 cites W2127472785 @default.
- W2740898088 cites W2149723649 @default.
- W2740898088 cites W2195657628 @default.
- W2740898088 cites W2411662729 @default.
- W2740898088 cites W3124166995 @default.
- W2740898088 doi "https://doi.org/10.4269/ajtmh.16-0648" @default.
- W2740898088 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5590565" @default.
- W2740898088 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28820678" @default.
- W2740898088 hasPublicationYear "2017" @default.
- W2740898088 type Work @default.
- W2740898088 sameAs 2740898088 @default.
- W2740898088 citedByCount "14" @default.
- W2740898088 countsByYear W27408980882019 @default.
- W2740898088 countsByYear W27408980882020 @default.
- W2740898088 countsByYear W27408980882021 @default.
- W2740898088 countsByYear W27408980882022 @default.
- W2740898088 countsByYear W27408980882023 @default.
- W2740898088 crossrefType "journal-article" @default.
- W2740898088 hasAuthorship W2740898088A5013973657 @default.
- W2740898088 hasAuthorship W2740898088A5014107541 @default.
- W2740898088 hasAuthorship W2740898088A5019786059 @default.
- W2740898088 hasAuthorship W2740898088A5029741432 @default.
- W2740898088 hasAuthorship W2740898088A5031888627 @default.
- W2740898088 hasAuthorship W2740898088A5032787375 @default.
- W2740898088 hasAuthorship W2740898088A5033829154 @default.
- W2740898088 hasAuthorship W2740898088A5046890346 @default.
- W2740898088 hasAuthorship W2740898088A5052098633 @default.
- W2740898088 hasAuthorship W2740898088A5052980492 @default.
- W2740898088 hasAuthorship W2740898088A5059212207 @default.
- W2740898088 hasAuthorship W2740898088A5070028057 @default.
- W2740898088 hasAuthorship W2740898088A5086185132 @default.
- W2740898088 hasAuthorship W2740898088A5087226997 @default.
- W2740898088 hasAuthorship W2740898088A5088363022 @default.
- W2740898088 hasBestOaLocation W27408980881 @default.
- W2740898088 hasConcept C105795698 @default.
- W2740898088 hasConcept C119857082 @default.
- W2740898088 hasConcept C139945424 @default.
- W2740898088 hasConcept C149782125 @default.
- W2740898088 hasConcept C150217764 @default.
- W2740898088 hasConcept C151406439 @default.
- W2740898088 hasConcept C152877465 @default.
- W2740898088 hasConcept C24338571 @default.
- W2740898088 hasConcept C2524010 @default.
- W2740898088 hasConcept C2908647359 @default.
- W2740898088 hasConcept C33923547 @default.
- W2740898088 hasConcept C41008148 @default.
- W2740898088 hasConcept C50644808 @default.
- W2740898088 hasConcept C61511704 @default.
- W2740898088 hasConcept C71924100 @default.
- W2740898088 hasConcept C83546350 @default.
- W2740898088 hasConcept C99454951 @default.
- W2740898088 hasConceptScore W2740898088C105795698 @default.
- W2740898088 hasConceptScore W2740898088C119857082 @default.
- W2740898088 hasConceptScore W2740898088C139945424 @default.
- W2740898088 hasConceptScore W2740898088C149782125 @default.
- W2740898088 hasConceptScore W2740898088C150217764 @default.
- W2740898088 hasConceptScore W2740898088C151406439 @default.
- W2740898088 hasConceptScore W2740898088C152877465 @default.
- W2740898088 hasConceptScore W2740898088C24338571 @default.
- W2740898088 hasConceptScore W2740898088C2524010 @default.
- W2740898088 hasConceptScore W2740898088C2908647359 @default.
- W2740898088 hasConceptScore W2740898088C33923547 @default.
- W2740898088 hasConceptScore W2740898088C41008148 @default.