Matches in SemOpenAlex for { <https://semopenalex.org/work/W2740947372> ?p ?o ?g. }
- W2740947372 endingPage "16" @default.
- W2740947372 startingPage "1" @default.
- W2740947372 abstract "Accurate box office forecasting models are developed by considering competition and word-of-mouth (WOM) effects in addition to screening-related information. Nationality, genre, ratings, and distributors of motion pictures running concurrently with the target motion picture are used to describe the competition, whereas the numbers of informative, positive, and negative mentions posted on social network services (SNS) are used to gauge the atmosphere spread by WOM. Among these candidate variables, only significant variables are selected by genetic algorithm (GA), based on which machine learning algorithms are trained to build forecasting models. The forecasts are combined to improve forecasting performance. Experimental results on the Korean film market show that the forecasting accuracy in early screening periods can be significantly improved by considering competition. In addition, WOM has a stronger influence on total box office forecasting. Considering both competition and WOM improves forecasting performance to a larger extent than when only one of them is considered." @default.
- W2740947372 created "2017-08-08" @default.
- W2740947372 creator A5008324248 @default.
- W2740947372 creator A5059650940 @default.
- W2740947372 creator A5060425240 @default.
- W2740947372 date "2017-01-01" @default.
- W2740947372 modified "2023-10-15" @default.
- W2740947372 title "Box Office Forecasting considering Competitive Environment and Word-of-Mouth in Social Networks: A Case Study of Korean Film Market" @default.
- W2740947372 cites W1480376833 @default.
- W2740947372 cites W1964357740 @default.
- W2740947372 cites W1968831178 @default.
- W2740947372 cites W1972914483 @default.
- W2740947372 cites W1975647885 @default.
- W2740947372 cites W1982465082 @default.
- W2740947372 cites W1982663173 @default.
- W2740947372 cites W1987364024 @default.
- W2740947372 cites W2001355090 @default.
- W2740947372 cites W2008659066 @default.
- W2740947372 cites W2014807613 @default.
- W2740947372 cites W2027280486 @default.
- W2740947372 cites W2038299034 @default.
- W2740947372 cites W2046006867 @default.
- W2740947372 cites W2051476628 @default.
- W2740947372 cites W2055255707 @default.
- W2740947372 cites W2057312656 @default.
- W2740947372 cites W2058830454 @default.
- W2740947372 cites W2084417734 @default.
- W2740947372 cites W2088510601 @default.
- W2740947372 cites W2092152913 @default.
- W2740947372 cites W2094054185 @default.
- W2740947372 cites W2094102473 @default.
- W2740947372 cites W2096514440 @default.
- W2740947372 cites W2119737213 @default.
- W2740947372 cites W2121528072 @default.
- W2740947372 cites W2126977778 @default.
- W2740947372 cites W2139936032 @default.
- W2740947372 cites W2145490166 @default.
- W2740947372 cites W2156566828 @default.
- W2740947372 cites W2159834812 @default.
- W2740947372 cites W2178456020 @default.
- W2740947372 cites W3121684966 @default.
- W2740947372 cites W3122462889 @default.
- W2740947372 cites W3122687407 @default.
- W2740947372 cites W3123252799 @default.
- W2740947372 cites W3123988349 @default.
- W2740947372 cites W3124627942 @default.
- W2740947372 cites W3125447008 @default.
- W2740947372 cites W3125653597 @default.
- W2740947372 cites W4236347152 @default.
- W2740947372 cites W4255184410 @default.
- W2740947372 doi "https://doi.org/10.1155/2017/4315419" @default.
- W2740947372 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5551474" @default.
- W2740947372 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28819355" @default.
- W2740947372 hasPublicationYear "2017" @default.
- W2740947372 type Work @default.
- W2740947372 sameAs 2740947372 @default.
- W2740947372 citedByCount "10" @default.
- W2740947372 countsByYear W27409473722019 @default.
- W2740947372 countsByYear W27409473722020 @default.
- W2740947372 countsByYear W27409473722022 @default.
- W2740947372 countsByYear W27409473722023 @default.
- W2740947372 crossrefType "journal-article" @default.
- W2740947372 hasAuthorship W2740947372A5008324248 @default.
- W2740947372 hasAuthorship W2740947372A5059650940 @default.
- W2740947372 hasAuthorship W2740947372A5060425240 @default.
- W2740947372 hasBestOaLocation W27409473721 @default.
- W2740947372 hasConcept C112698675 @default.
- W2740947372 hasConcept C136764020 @default.
- W2740947372 hasConcept C137913393 @default.
- W2740947372 hasConcept C144133560 @default.
- W2740947372 hasConcept C149782125 @default.
- W2740947372 hasConcept C154945302 @default.
- W2740947372 hasConcept C162324750 @default.
- W2740947372 hasConcept C162853370 @default.
- W2740947372 hasConcept C166957645 @default.
- W2740947372 hasConcept C18903297 @default.
- W2740947372 hasConcept C2992750335 @default.
- W2740947372 hasConcept C40976572 @default.
- W2740947372 hasConcept C41008148 @default.
- W2740947372 hasConcept C518677369 @default.
- W2740947372 hasConcept C86803240 @default.
- W2740947372 hasConcept C91306197 @default.
- W2740947372 hasConcept C95457728 @default.
- W2740947372 hasConceptScore W2740947372C112698675 @default.
- W2740947372 hasConceptScore W2740947372C136764020 @default.
- W2740947372 hasConceptScore W2740947372C137913393 @default.
- W2740947372 hasConceptScore W2740947372C144133560 @default.
- W2740947372 hasConceptScore W2740947372C149782125 @default.
- W2740947372 hasConceptScore W2740947372C154945302 @default.
- W2740947372 hasConceptScore W2740947372C162324750 @default.
- W2740947372 hasConceptScore W2740947372C162853370 @default.
- W2740947372 hasConceptScore W2740947372C166957645 @default.
- W2740947372 hasConceptScore W2740947372C18903297 @default.
- W2740947372 hasConceptScore W2740947372C2992750335 @default.
- W2740947372 hasConceptScore W2740947372C40976572 @default.
- W2740947372 hasConceptScore W2740947372C41008148 @default.
- W2740947372 hasConceptScore W2740947372C518677369 @default.
- W2740947372 hasConceptScore W2740947372C86803240 @default.