Matches in SemOpenAlex for { <https://semopenalex.org/work/W2741129224> ?p ?o ?g. }
- W2741129224 abstract "Automatic Speaker Analysis has largely focused on single aspects of a speaker such as her ID, gender, emotion, personality, or health state. This broadly ignores the interdependency of all the different states and traits impacting on the one single voice production mechanism available to a human speaker. In other words, sometimes we may sound depressed, but we simply have a flu, and hardly find the energy to put more vocal effort into our articulation and sound production. Recently, this lack gave rise to an increasingly holistic speaker analysis — assessing the ‘larger picture’ in one pass such as by multi-target learning. However, for a robust assessment, this requires large amount of speech and language resources labelled in rich ways to train such interdependency, and architectures able to cope with multi-target learning of massive amounts of speech data. In this light, this contribution will discuss efficient mechanisms such as large socialmedia pre-scanning with dynamic cooperative crowd-sourcing for rapid data collection, cross-task-labelling of these data in a wider range of attributes to reach ‘big & rich’ speech data, and efficient multi-target end-to-end and end-to-evolution deep learning paradigms to learn an accordingly rich representation of diverse target tasks in efficient ways. The ultimate goal behind is to enable machines to hear the ‘entire’ person and her condition and whereabouts behind the voice and words — rather than aiming at a single aspect blind to the overall individual and its state, thus leading to the next level of Automatic Speaker Analysis." @default.
- W2741129224 created "2017-08-08" @default.
- W2741129224 creator A5019651318 @default.
- W2741129224 date "2017-07-01" @default.
- W2741129224 modified "2023-09-23" @default.
- W2741129224 title "Automatic speaker analysis 2.0: Hearing the bigger picture" @default.
- W2741129224 cites W1574761837 @default.
- W2741129224 cites W163811496 @default.
- W2741129224 cites W1677182931 @default.
- W2741129224 cites W1967968483 @default.
- W2741129224 cites W1975950487 @default.
- W2741129224 cites W1988596541 @default.
- W2741129224 cites W2004942499 @default.
- W2741129224 cites W2015697900 @default.
- W2741129224 cites W2039846947 @default.
- W2741129224 cites W2045956438 @default.
- W2741129224 cites W2071843190 @default.
- W2741129224 cites W2090304207 @default.
- W2741129224 cites W2127499922 @default.
- W2741129224 cites W2284916459 @default.
- W2741129224 cites W2293468623 @default.
- W2741129224 cites W2325167098 @default.
- W2741129224 cites W2343758848 @default.
- W2741129224 cites W2399733683 @default.
- W2741129224 cites W2402511497 @default.
- W2741129224 cites W2408690103 @default.
- W2741129224 cites W2499480874 @default.
- W2741129224 cites W2552261287 @default.
- W2741129224 cites W2589599921 @default.
- W2741129224 cites W2598545578 @default.
- W2741129224 cites W2612919868 @default.
- W2741129224 cites W2621203830 @default.
- W2741129224 cites W2735449402 @default.
- W2741129224 cites W2740375526 @default.
- W2741129224 cites W2745480282 @default.
- W2741129224 cites W2746502628 @default.
- W2741129224 cites W2748699435 @default.
- W2741129224 cites W2963569749 @default.
- W2741129224 doi "https://doi.org/10.1109/sped.2017.7990449" @default.
- W2741129224 hasPublicationYear "2017" @default.
- W2741129224 type Work @default.
- W2741129224 sameAs 2741129224 @default.
- W2741129224 citedByCount "0" @default.
- W2741129224 crossrefType "proceedings-article" @default.
- W2741129224 hasAuthorship W2741129224A5019651318 @default.
- W2741129224 hasBestOaLocation W27411292242 @default.
- W2741129224 hasConcept C127413603 @default.
- W2741129224 hasConcept C139719470 @default.
- W2741129224 hasConcept C154945302 @default.
- W2741129224 hasConcept C162324750 @default.
- W2741129224 hasConcept C17744445 @default.
- W2741129224 hasConcept C185874996 @default.
- W2741129224 hasConcept C199539241 @default.
- W2741129224 hasConcept C201995342 @default.
- W2741129224 hasConcept C204321447 @default.
- W2741129224 hasConcept C2778348673 @default.
- W2741129224 hasConcept C2779337067 @default.
- W2741129224 hasConcept C2780451532 @default.
- W2741129224 hasConcept C28490314 @default.
- W2741129224 hasConcept C41008148 @default.
- W2741129224 hasConcept C43617652 @default.
- W2741129224 hasConcept C94625758 @default.
- W2741129224 hasConceptScore W2741129224C127413603 @default.
- W2741129224 hasConceptScore W2741129224C139719470 @default.
- W2741129224 hasConceptScore W2741129224C154945302 @default.
- W2741129224 hasConceptScore W2741129224C162324750 @default.
- W2741129224 hasConceptScore W2741129224C17744445 @default.
- W2741129224 hasConceptScore W2741129224C185874996 @default.
- W2741129224 hasConceptScore W2741129224C199539241 @default.
- W2741129224 hasConceptScore W2741129224C201995342 @default.
- W2741129224 hasConceptScore W2741129224C204321447 @default.
- W2741129224 hasConceptScore W2741129224C2778348673 @default.
- W2741129224 hasConceptScore W2741129224C2779337067 @default.
- W2741129224 hasConceptScore W2741129224C2780451532 @default.
- W2741129224 hasConceptScore W2741129224C28490314 @default.
- W2741129224 hasConceptScore W2741129224C41008148 @default.
- W2741129224 hasConceptScore W2741129224C43617652 @default.
- W2741129224 hasConceptScore W2741129224C94625758 @default.
- W2741129224 hasLocation W27411292241 @default.
- W2741129224 hasLocation W27411292242 @default.
- W2741129224 hasOpenAccess W2741129224 @default.
- W2741129224 hasPrimaryLocation W27411292241 @default.
- W2741129224 hasRelatedWork W1512584652 @default.
- W2741129224 hasRelatedWork W1553264050 @default.
- W2741129224 hasRelatedWork W1977091539 @default.
- W2741129224 hasRelatedWork W2056415906 @default.
- W2741129224 hasRelatedWork W2224025406 @default.
- W2741129224 hasRelatedWork W2610448050 @default.
- W2741129224 hasRelatedWork W2612030847 @default.
- W2741129224 hasRelatedWork W2613634895 @default.
- W2741129224 hasRelatedWork W2765617518 @default.
- W2741129224 hasRelatedWork W2769618928 @default.
- W2741129224 hasRelatedWork W3000558177 @default.
- W2741129224 hasRelatedWork W3016219267 @default.
- W2741129224 hasRelatedWork W3036499953 @default.
- W2741129224 hasRelatedWork W3082779874 @default.
- W2741129224 hasRelatedWork W3191488649 @default.
- W2741129224 hasRelatedWork W3207958670 @default.
- W2741129224 hasRelatedWork W33124365 @default.
- W2741129224 hasRelatedWork W63300986 @default.