Matches in SemOpenAlex for { <https://semopenalex.org/work/W2741574008> ?p ?o ?g. }
- W2741574008 endingPage "164" @default.
- W2741574008 startingPage "143" @default.
- W2741574008 abstract "Since the turn of the century experimental solid mechanics has undergone major changes with the generalized use of images. The number of acquired data has literally exploded and one of today’s challenges is related to the saturation of mining procedures through such big data sets. With respect to digital image/volume correlation one of tomorrow’s pathways is to better control and master this data flow with procedures that are optimized for extracting the sought information with minimum uncertainties and maximum robustness. In this paper emphasis is put on various hierarchical identification procedures. Based on such structures a posteriori model/data reductions are performed in order to ease and make the exploitation of the experimental information far more efficient. Some possibilities related to other model order reduction techniques like the proper generalized decomposition are discussed and new opportunities are sketched." @default.
- W2741574008 created "2017-08-08" @default.
- W2741574008 creator A5005353859 @default.
- W2741574008 creator A5024328785 @default.
- W2741574008 creator A5043453686 @default.
- W2741574008 creator A5074817623 @default.
- W2741574008 date "2017-07-28" @default.
- W2741574008 modified "2023-10-07" @default.
- W2741574008 title "Big Data in Experimental Mechanics and Model Order Reduction: Today’s Challenges and Tomorrow’s Opportunities" @default.
- W2741574008 cites W1215509090 @default.
- W2741574008 cites W1544956813 @default.
- W2741574008 cites W1649538714 @default.
- W2741574008 cites W1704409945 @default.
- W2741574008 cites W1794920832 @default.
- W2741574008 cites W1934294938 @default.
- W2741574008 cites W1968413015 @default.
- W2741574008 cites W1973136150 @default.
- W2741574008 cites W1980169031 @default.
- W2741574008 cites W1982024912 @default.
- W2741574008 cites W1982996443 @default.
- W2741574008 cites W1984177621 @default.
- W2741574008 cites W1985183959 @default.
- W2741574008 cites W1987312369 @default.
- W2741574008 cites W1989542828 @default.
- W2741574008 cites W2004036860 @default.
- W2741574008 cites W2004979443 @default.
- W2741574008 cites W2005434510 @default.
- W2741574008 cites W2006744632 @default.
- W2741574008 cites W2024085654 @default.
- W2741574008 cites W2024292495 @default.
- W2741574008 cites W2040086034 @default.
- W2741574008 cites W2040546580 @default.
- W2741574008 cites W2047591100 @default.
- W2741574008 cites W2047698578 @default.
- W2741574008 cites W2051055151 @default.
- W2741574008 cites W2054946696 @default.
- W2741574008 cites W2056969813 @default.
- W2741574008 cites W2058910428 @default.
- W2741574008 cites W2068388093 @default.
- W2741574008 cites W2072396773 @default.
- W2741574008 cites W2072937002 @default.
- W2741574008 cites W2077512910 @default.
- W2741574008 cites W2078824507 @default.
- W2741574008 cites W2082469227 @default.
- W2741574008 cites W2083645324 @default.
- W2741574008 cites W2087810003 @default.
- W2741574008 cites W2089099479 @default.
- W2741574008 cites W2092508481 @default.
- W2741574008 cites W2097654801 @default.
- W2741574008 cites W2103876596 @default.
- W2741574008 cites W2116950173 @default.
- W2741574008 cites W2129296001 @default.
- W2741574008 cites W2131757000 @default.
- W2741574008 cites W2154940804 @default.
- W2741574008 cites W2165802332 @default.
- W2741574008 cites W2261676784 @default.
- W2741574008 cites W2305265259 @default.
- W2741574008 cites W2316416343 @default.
- W2741574008 cites W2321142816 @default.
- W2741574008 cites W2338424544 @default.
- W2741574008 cites W2382006452 @default.
- W2741574008 cites W2418802570 @default.
- W2741574008 cites W2470730516 @default.
- W2741574008 cites W2484195826 @default.
- W2741574008 cites W2949611276 @default.
- W2741574008 cites W4243911070 @default.
- W2741574008 cites W4299993525 @default.
- W2741574008 cites W863036806 @default.
- W2741574008 doi "https://doi.org/10.1007/s11831-017-9234-3" @default.
- W2741574008 hasPublicationYear "2017" @default.
- W2741574008 type Work @default.
- W2741574008 sameAs 2741574008 @default.
- W2741574008 citedByCount "40" @default.
- W2741574008 countsByYear W27415740082018 @default.
- W2741574008 countsByYear W27415740082019 @default.
- W2741574008 countsByYear W27415740082020 @default.
- W2741574008 countsByYear W27415740082021 @default.
- W2741574008 countsByYear W27415740082022 @default.
- W2741574008 countsByYear W27415740082023 @default.
- W2741574008 crossrefType "journal-article" @default.
- W2741574008 hasAuthorship W2741574008A5005353859 @default.
- W2741574008 hasAuthorship W2741574008A5024328785 @default.
- W2741574008 hasAuthorship W2741574008A5043453686 @default.
- W2741574008 hasAuthorship W2741574008A5074817623 @default.
- W2741574008 hasBestOaLocation W27415740084 @default.
- W2741574008 hasConcept C104317684 @default.
- W2741574008 hasConcept C111335779 @default.
- W2741574008 hasConcept C111472728 @default.
- W2741574008 hasConcept C11413529 @default.
- W2741574008 hasConcept C121332964 @default.
- W2741574008 hasConcept C124101348 @default.
- W2741574008 hasConcept C127413603 @default.
- W2741574008 hasConcept C13736549 @default.
- W2741574008 hasConcept C138885662 @default.
- W2741574008 hasConcept C185592680 @default.
- W2741574008 hasConcept C196558001 @default.
- W2741574008 hasConcept C2522767166 @default.
- W2741574008 hasConcept C2524010 @default.