Matches in SemOpenAlex for { <https://semopenalex.org/work/W2741660982> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2741660982 abstract "Blood demand and supply management are considered one of the major components of a healthcare supply chain, since blood is a vital element in preserving patient's life. However, forecasting it faces several challenges including frequent shortages, and possible expiration caused by demand uncertainty of hospitals. This uncertainty is mainly due to high variability in the number of emergency cases. Thereupon, this investigation presents a real case study of forecasting monthly demand of three blood components, using Artificial Neural Networks (ANNs). The demand of the three blood components (red blood cells (RBC), plasma (CP) and platelets (PFC)) and other observations are obtained from a central transfusion blood center and a University Hospital. Experiments are carried out using three networks to forecast each blood component separately. Last, the presented model is compared with ARIMA to evaluate its performance in prediction. The results of this study depict that ANN models overcomes ARIMA models in demand forecasting. Thus high ANN models can be considered as a promising approach in forecasting monthly blood demand." @default.
- W2741660982 created "2017-08-08" @default.
- W2741660982 creator A5020368196 @default.
- W2741660982 creator A5032956761 @default.
- W2741660982 creator A5042861200 @default.
- W2741660982 creator A5075030531 @default.
- W2741660982 date "2017-03-29" @default.
- W2741660982 modified "2023-09-26" @default.
- W2741660982 title "Artificial Neural Network Based Approach for Blood Demand Forecasting" @default.
- W2741660982 cites W1988526468 @default.
- W2741660982 cites W2017587036 @default.
- W2741660982 cites W2034007627 @default.
- W2741660982 cites W2048353971 @default.
- W2741660982 cites W2057936307 @default.
- W2741660982 cites W2061455140 @default.
- W2741660982 cites W2064696322 @default.
- W2741660982 cites W2125290375 @default.
- W2741660982 cites W2169133682 @default.
- W2741660982 cites W2199619786 @default.
- W2741660982 cites W2205584564 @default.
- W2741660982 cites W2340904647 @default.
- W2741660982 cites W3148442452 @default.
- W2741660982 cites W4232414536 @default.
- W2741660982 cites W4297991457 @default.
- W2741660982 cites W45965901 @default.
- W2741660982 doi "https://doi.org/10.1145/3090354.3090415" @default.
- W2741660982 hasPublicationYear "2017" @default.
- W2741660982 type Work @default.
- W2741660982 sameAs 2741660982 @default.
- W2741660982 citedByCount "20" @default.
- W2741660982 countsByYear W27416609822018 @default.
- W2741660982 countsByYear W27416609822019 @default.
- W2741660982 countsByYear W27416609822020 @default.
- W2741660982 countsByYear W27416609822021 @default.
- W2741660982 countsByYear W27416609822022 @default.
- W2741660982 countsByYear W27416609822023 @default.
- W2741660982 crossrefType "proceedings-article" @default.
- W2741660982 hasAuthorship W2741660982A5020368196 @default.
- W2741660982 hasAuthorship W2741660982A5032956761 @default.
- W2741660982 hasAuthorship W2741660982A5042861200 @default.
- W2741660982 hasAuthorship W2741660982A5075030531 @default.
- W2741660982 hasConcept C127413603 @default.
- W2741660982 hasConcept C154945302 @default.
- W2741660982 hasConcept C193809577 @default.
- W2741660982 hasConcept C41008148 @default.
- W2741660982 hasConcept C42475967 @default.
- W2741660982 hasConcept C50644808 @default.
- W2741660982 hasConceptScore W2741660982C127413603 @default.
- W2741660982 hasConceptScore W2741660982C154945302 @default.
- W2741660982 hasConceptScore W2741660982C193809577 @default.
- W2741660982 hasConceptScore W2741660982C41008148 @default.
- W2741660982 hasConceptScore W2741660982C42475967 @default.
- W2741660982 hasConceptScore W2741660982C50644808 @default.
- W2741660982 hasLocation W27416609821 @default.
- W2741660982 hasOpenAccess W2741660982 @default.
- W2741660982 hasPrimaryLocation W27416609821 @default.
- W2741660982 hasRelatedWork W1965565226 @default.
- W2741660982 hasRelatedWork W2009025773 @default.
- W2741660982 hasRelatedWork W2026481652 @default.
- W2741660982 hasRelatedWork W2077605650 @default.
- W2741660982 hasRelatedWork W2159443810 @default.
- W2741660982 hasRelatedWork W2343337519 @default.
- W2741660982 hasRelatedWork W2386387936 @default.
- W2741660982 hasRelatedWork W3001020386 @default.
- W2741660982 hasRelatedWork W644753246 @default.
- W2741660982 hasRelatedWork W1629725936 @default.
- W2741660982 isParatext "false" @default.
- W2741660982 isRetracted "false" @default.
- W2741660982 magId "2741660982" @default.
- W2741660982 workType "article" @default.