Matches in SemOpenAlex for { <https://semopenalex.org/work/W2741850692> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2741850692 abstract "In the problem of learning with label proportions (also known as the problem of estimating class ratios), the training data is unlabeled, and only the proportions of examples receiving each label are given. The goal is to learn a hypothesis that predicts the proportions of labels on the distribution underlying the sample. This model of learning is useful in a wide variety of settings, including predicting the number of votes for candidates in political elections from polls. In this paper, we resolve foundational questions regarding the computational complexity of learning in this setting. We formalize a simple version of the setting, and we compare the computational complexity of learning in this model to classical PAC learning. Perhaps surprisingly, we show that what can be learned efficiently in this model is a strict subset of what may be leaned efficiently in PAC, under standard complexity assumptions. We give a characterization in terms of VC dimension, and we show that there are non-trivial problems in this model that can be efficiently learned. We also give an algorithm that demonstrates the feasibility of learning under well-behaved distributions." @default.
- W2741850692 created "2017-08-08" @default.
- W2741850692 creator A5081065957 @default.
- W2741850692 creator A5089648366 @default.
- W2741850692 date "2017-08-01" @default.
- W2741850692 modified "2023-10-16" @default.
- W2741850692 title "On the Complexity of Learning from Label Proportions" @default.
- W2741850692 doi "https://doi.org/10.24963/ijcai.2017/232" @default.
- W2741850692 hasPublicationYear "2017" @default.
- W2741850692 type Work @default.
- W2741850692 sameAs 2741850692 @default.
- W2741850692 citedByCount "9" @default.
- W2741850692 countsByYear W27418506922018 @default.
- W2741850692 countsByYear W27418506922019 @default.
- W2741850692 countsByYear W27418506922020 @default.
- W2741850692 countsByYear W27418506922023 @default.
- W2741850692 crossrefType "proceedings-article" @default.
- W2741850692 hasAuthorship W2741850692A5081065957 @default.
- W2741850692 hasAuthorship W2741850692A5089648366 @default.
- W2741850692 hasBestOaLocation W27418506921 @default.
- W2741850692 hasConcept C111472728 @default.
- W2741850692 hasConcept C11413529 @default.
- W2741850692 hasConcept C114614502 @default.
- W2741850692 hasConcept C119322782 @default.
- W2741850692 hasConcept C119857082 @default.
- W2741850692 hasConcept C136197465 @default.
- W2741850692 hasConcept C138885662 @default.
- W2741850692 hasConcept C154945302 @default.
- W2741850692 hasConcept C176248197 @default.
- W2741850692 hasConcept C179799912 @default.
- W2741850692 hasConcept C2777212361 @default.
- W2741850692 hasConcept C2778445095 @default.
- W2741850692 hasConcept C2780586882 @default.
- W2741850692 hasConcept C33676613 @default.
- W2741850692 hasConcept C33923547 @default.
- W2741850692 hasConcept C41008148 @default.
- W2741850692 hasConcept C50292564 @default.
- W2741850692 hasConcept C8038995 @default.
- W2741850692 hasConcept C80444323 @default.
- W2741850692 hasConceptScore W2741850692C111472728 @default.
- W2741850692 hasConceptScore W2741850692C11413529 @default.
- W2741850692 hasConceptScore W2741850692C114614502 @default.
- W2741850692 hasConceptScore W2741850692C119322782 @default.
- W2741850692 hasConceptScore W2741850692C119857082 @default.
- W2741850692 hasConceptScore W2741850692C136197465 @default.
- W2741850692 hasConceptScore W2741850692C138885662 @default.
- W2741850692 hasConceptScore W2741850692C154945302 @default.
- W2741850692 hasConceptScore W2741850692C176248197 @default.
- W2741850692 hasConceptScore W2741850692C179799912 @default.
- W2741850692 hasConceptScore W2741850692C2777212361 @default.
- W2741850692 hasConceptScore W2741850692C2778445095 @default.
- W2741850692 hasConceptScore W2741850692C2780586882 @default.
- W2741850692 hasConceptScore W2741850692C33676613 @default.
- W2741850692 hasConceptScore W2741850692C33923547 @default.
- W2741850692 hasConceptScore W2741850692C41008148 @default.
- W2741850692 hasConceptScore W2741850692C50292564 @default.
- W2741850692 hasConceptScore W2741850692C8038995 @default.
- W2741850692 hasConceptScore W2741850692C80444323 @default.
- W2741850692 hasLocation W27418506921 @default.
- W2741850692 hasLocation W27418506922 @default.
- W2741850692 hasOpenAccess W2741850692 @default.
- W2741850692 hasPrimaryLocation W27418506921 @default.
- W2741850692 hasRelatedWork W195393342 @default.
- W2741850692 hasRelatedWork W1966196663 @default.
- W2741850692 hasRelatedWork W2005530305 @default.
- W2741850692 hasRelatedWork W2090559885 @default.
- W2741850692 hasRelatedWork W2171660797 @default.
- W2741850692 hasRelatedWork W2741850692 @default.
- W2741850692 hasRelatedWork W2972514247 @default.
- W2741850692 hasRelatedWork W3027494763 @default.
- W2741850692 hasRelatedWork W3045059498 @default.
- W2741850692 hasRelatedWork W4320855563 @default.
- W2741850692 isParatext "false" @default.
- W2741850692 isRetracted "false" @default.
- W2741850692 magId "2741850692" @default.
- W2741850692 workType "article" @default.