Matches in SemOpenAlex for { <https://semopenalex.org/work/W2741907166> ?p ?o ?g. }
- W2741907166 endingPage "5420" @default.
- W2741907166 startingPage "5391" @default.
- W2741907166 abstract "Abstract Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end‐to‐end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end‐to‐end EEG analysis, but a better understanding of how to design and train ConvNets for end‐to‐end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task‐related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG‐based brain mapping. Hum Brain Mapp 38:5391–5420, 2017 . © 2017 Wiley Periodicals, Inc." @default.
- W2741907166 created "2017-08-08" @default.
- W2741907166 creator A5016872527 @default.
- W2741907166 creator A5017985443 @default.
- W2741907166 creator A5018131113 @default.
- W2741907166 creator A5031002895 @default.
- W2741907166 creator A5049330818 @default.
- W2741907166 creator A5054081898 @default.
- W2741907166 creator A5067573169 @default.
- W2741907166 creator A5081813991 @default.
- W2741907166 creator A5084499878 @default.
- W2741907166 date "2017-08-07" @default.
- W2741907166 modified "2023-10-17" @default.
- W2741907166 title "Deep learning with convolutional neural networks for EEG decoding and visualization" @default.
- W2741907166 cites W1534665966 @default.
- W2741907166 cites W1600744878 @default.
- W2741907166 cites W1649885719 @default.
- W2741907166 cites W1787224781 @default.
- W2741907166 cites W1932198206 @default.
- W2741907166 cites W1971281397 @default.
- W2741907166 cites W1972999291 @default.
- W2741907166 cites W1973057398 @default.
- W2741907166 cites W1995562189 @default.
- W2741907166 cites W2011402106 @default.
- W2741907166 cites W2021098468 @default.
- W2741907166 cites W2023222495 @default.
- W2741907166 cites W2024513524 @default.
- W2741907166 cites W2033310064 @default.
- W2741907166 cites W2034312116 @default.
- W2741907166 cites W2038016568 @default.
- W2741907166 cites W2040739363 @default.
- W2741907166 cites W2050265252 @default.
- W2741907166 cites W2052684349 @default.
- W2741907166 cites W2063146169 @default.
- W2741907166 cites W2064264510 @default.
- W2741907166 cites W2071049838 @default.
- W2741907166 cites W2071388329 @default.
- W2741907166 cites W2074299407 @default.
- W2741907166 cites W2076063813 @default.
- W2741907166 cites W2082070408 @default.
- W2741907166 cites W2087704839 @default.
- W2741907166 cites W2087733543 @default.
- W2741907166 cites W2092985495 @default.
- W2741907166 cites W2098391699 @default.
- W2741907166 cites W2098644279 @default.
- W2741907166 cites W2099509424 @default.
- W2741907166 cites W2103528520 @default.
- W2741907166 cites W2104063964 @default.
- W2741907166 cites W2110065044 @default.
- W2741907166 cites W2118872857 @default.
- W2741907166 cites W2119163516 @default.
- W2741907166 cites W2119615570 @default.
- W2741907166 cites W2125727363 @default.
- W2741907166 cites W2130243088 @default.
- W2741907166 cites W2133561518 @default.
- W2741907166 cites W2138417194 @default.
- W2741907166 cites W2142280324 @default.
- W2741907166 cites W2144910141 @default.
- W2741907166 cites W2150590430 @default.
- W2741907166 cites W2152119085 @default.
- W2741907166 cites W2165730296 @default.
- W2741907166 cites W2195388612 @default.
- W2741907166 cites W2198724430 @default.
- W2741907166 cites W2218506909 @default.
- W2741907166 cites W2238628508 @default.
- W2741907166 cites W2257979135 @default.
- W2741907166 cites W2295977970 @default.
- W2741907166 cites W2325230706 @default.
- W2741907166 cites W2344637607 @default.
- W2741907166 cites W2398826216 @default.
- W2741907166 cites W2414309931 @default.
- W2741907166 cites W2426211887 @default.
- W2741907166 cites W2517777200 @default.
- W2741907166 cites W2551178936 @default.
- W2741907166 cites W2553015255 @default.
- W2741907166 cites W2557301950 @default.
- W2741907166 cites W2559873324 @default.
- W2741907166 cites W2561180709 @default.
- W2741907166 cites W2566714567 @default.
- W2741907166 cites W2632654127 @default.
- W2741907166 cites W2919115771 @default.
- W2741907166 cites W2963287333 @default.
- W2741907166 cites W2963989815 @default.
- W2741907166 cites W4238684772 @default.
- W2741907166 cites W4250543537 @default.
- W2741907166 cites W4252684946 @default.
- W2741907166 cites W4361867849 @default.
- W2741907166 cites W877297219 @default.
- W2741907166 doi "https://doi.org/10.1002/hbm.23730" @default.
- W2741907166 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5655781" @default.
- W2741907166 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28782865" @default.
- W2741907166 hasPublicationYear "2017" @default.
- W2741907166 type Work @default.
- W2741907166 sameAs 2741907166 @default.
- W2741907166 citedByCount "1488" @default.
- W2741907166 countsByYear W27419071662016 @default.
- W2741907166 countsByYear W27419071662017 @default.
- W2741907166 countsByYear W27419071662018 @default.