Matches in SemOpenAlex for { <https://semopenalex.org/work/W27419151> ?p ?o ?g. }
- W27419151 abstract "In the last decade, a great deal of work has been devoted to the elaboration of a sampling theory for smooth surfaces. The goal was to work out sampling conditions that ensure a good reconstruction of a given smooth surface S from a finite subset E of S. Among these conditions, a prominent one is the e-sampling condition of Amenta and Bern, which states that every point p of S is closer to E than e times lfs(p), where lfs(p) is the distance of p to the medial axis of S. Amenta and Bern proved that it is possible to extract from the Delaunay triangulation of E a PL surface that approximates S both topologically and geometrically. Nevertheless, the important issues of checking whether a given point set is an e-sample, and constructing e-samples of a given smooth surface, have never been addressed. Moreover, the sampling conditions proposed so far offer guarantees only in the smooth setting, since lfs vanishes at points where the surface is not differentiable. In this thesis, we introduce the concept of loose e-sample, which can be viewed as a weak version of the notion of e-sample. The main advantage of loose e-samples over e-samples is that they are easier to check and to construct. Indeed, checking that a finite set of points is a loose e-sample reduces to checking whether a finite number of spheres have small enough radii. When the surface S is smooth, we prove that, for sufficiently small e, e-samples are loose e-samples and vice-versa. As a consequence, loose e-samples offer the same topological and geometric guarantees as e-samples. We further extend our results to the nonsmooth case by introducing a new measurable quantity, called the Lipschitz radius, which plays a role similar to that of lfs in the smooth setting, but which turns out to be well-defined and positive on a much larger class of shapes. Specifically, it characterizes the class of Lipschitz surfaces, which includes in particular all piecewise smooth surfaces such that the normal variation around singular points is not too large. Our main result is that, if S is a Lipschitz surface and E is a point sampling of S such that any point p of S has a distance to E that is less than a fraction of the Lipschitz radius of S, then we obtain similar guarantees as in the smooth setting. More precisely, we show that the Delaunay triangulation of E restricted to S is a 2-manifold isotopic to S lying at Hausdorff distance O(e) from S, provided that its facets are not too skinny. We also extend our previous results on loose samples. Furthermore, we are able to give tight bounds on the size of such samples. To show the practicality of the concept of loose e-sample, we present a simple algorithm that constructs provably good surface meshes. Given a compact Lipschitz surface S without boundary and a positive parameter e, the algorithm generates a sparse loose e-sample E and at the same time a triangular mesh extracted from the Delaunay triangulation of E. Taking advantage of our theoretical results on loose e-samples, we can guarantee that this triangular mesh is a good topological and geometric approximation of S, under mild assumptions on the input parameter e. A noticeable feature of the algorithm is that the input surface S needs only to be known through an oracle that, given a line segment, detects whether the segment intersects the surface and, in the affirmative, returns the intersection points. This makes the algorithm useful in a wide variety of contexts and for a large class of shapes. We illustrate the genericity of the approach through a series of applications: implicit surface meshing, polygonal surface remeshing, unknown surface probing, and volume meshing." @default.
- W27419151 created "2016-06-24" @default.
- W27419151 creator A5032839569 @default.
- W27419151 date "2005-12-14" @default.
- W27419151 modified "2023-09-23" @default.
- W27419151 title "Sampling and Meshing Surfaces with Guarantees" @default.
- W27419151 cites W140937755 @default.
- W27419151 cites W1489440025 @default.
- W27419151 cites W1503737592 @default.
- W27419151 cites W1517042016 @default.
- W27419151 cites W1517297551 @default.
- W27419151 cites W1522020530 @default.
- W27419151 cites W1551360398 @default.
- W27419151 cites W1565212980 @default.
- W27419151 cites W1579063588 @default.
- W27419151 cites W165595478 @default.
- W27419151 cites W174979102 @default.
- W27419151 cites W177534197 @default.
- W27419151 cites W1969549682 @default.
- W27419151 cites W1972064980 @default.
- W27419151 cites W1973492835 @default.
- W27419151 cites W1980377526 @default.
- W27419151 cites W2000985550 @default.
- W27419151 cites W2006063729 @default.
- W27419151 cites W2006213557 @default.
- W27419151 cites W2007626594 @default.
- W27419151 cites W2008234693 @default.
- W27419151 cites W2008607831 @default.
- W27419151 cites W2014530345 @default.
- W27419151 cites W2015816463 @default.
- W27419151 cites W2021369132 @default.
- W27419151 cites W2026043300 @default.
- W27419151 cites W2026172757 @default.
- W27419151 cites W2026786966 @default.
- W27419151 cites W2030136392 @default.
- W27419151 cites W2033852670 @default.
- W27419151 cites W2036309107 @default.
- W27419151 cites W2038073127 @default.
- W27419151 cites W2039081484 @default.
- W27419151 cites W2040180707 @default.
- W27419151 cites W2046305987 @default.
- W27419151 cites W2050167630 @default.
- W27419151 cites W2051200663 @default.
- W27419151 cites W2058634350 @default.
- W27419151 cites W2061952079 @default.
- W27419151 cites W206337890 @default.
- W27419151 cites W2064436582 @default.
- W27419151 cites W2073751737 @default.
- W27419151 cites W2080681806 @default.
- W27419151 cites W2086571963 @default.
- W27419151 cites W2088352159 @default.
- W27419151 cites W2089005118 @default.
- W27419151 cites W2093027094 @default.
- W27419151 cites W2100816864 @default.
- W27419151 cites W2103671504 @default.
- W27419151 cites W2109764733 @default.
- W27419151 cites W2118970948 @default.
- W27419151 cites W2120694921 @default.
- W27419151 cites W2126439213 @default.
- W27419151 cites W2127307450 @default.
- W27419151 cites W2130655139 @default.
- W27419151 cites W2137224975 @default.
- W27419151 cites W2138568701 @default.
- W27419151 cites W2142586112 @default.
- W27419151 cites W2145900561 @default.
- W27419151 cites W2147827640 @default.
- W27419151 cites W2150874139 @default.
- W27419151 cites W2155346457 @default.
- W27419151 cites W2160370033 @default.
- W27419151 cites W2162618853 @default.
- W27419151 cites W2171692255 @default.
- W27419151 cites W2196734151 @default.
- W27419151 cites W2199460564 @default.
- W27419151 cites W2229412420 @default.
- W27419151 cites W2613643832 @default.
- W27419151 cites W2623861152 @default.
- W27419151 cites W3139495523 @default.
- W27419151 cites W3139497334 @default.
- W27419151 cites W588295442 @default.
- W27419151 cites W75552375 @default.
- W27419151 cites W7908583 @default.
- W27419151 cites W964237496 @default.
- W27419151 hasPublicationYear "2005" @default.
- W27419151 type Work @default.
- W27419151 sameAs 27419151 @default.
- W27419151 citedByCount "1" @default.
- W27419151 crossrefType "dissertation" @default.
- W27419151 hasAuthorship W27419151A5032839569 @default.
- W27419151 hasConcept C106131492 @default.
- W27419151 hasConcept C114614502 @default.
- W27419151 hasConcept C118615104 @default.
- W27419151 hasConcept C121332964 @default.
- W27419151 hasConcept C128321387 @default.
- W27419151 hasConcept C134306372 @default.
- W27419151 hasConcept C135981907 @default.
- W27419151 hasConcept C140779682 @default.
- W27419151 hasConcept C162392398 @default.
- W27419151 hasConcept C177264268 @default.
- W27419151 hasConcept C198531522 @default.
- W27419151 hasConcept C199360897 @default.