Matches in SemOpenAlex for { <https://semopenalex.org/work/W2742227511> ?p ?o ?g. }
- W2742227511 endingPage "4740" @default.
- W2742227511 startingPage "4726" @default.
- W2742227511 abstract "An accurate yet computationally very efficient and formally well justified approach to calculate molecular ionization potentials is presented and tested. The first as well as higher ionization potentials are obtained as the negatives of the Kohn-Sham eigenvalues of the neutral molecule after adjusting the eigenvalues by a recently [ Görling Phys. Rev. B 2015 , 91 , 245120 ] introduced potential adjustor for exchange-correlation potentials. Technically the method is very simple. Besides a Kohn-Sham calculation of the neutral molecule, only a second Kohn-Sham calculation of the cation is required. The eigenvalue spectrum of the neutral molecule is shifted such that the negative of the eigenvalue of the highest occupied molecular orbital equals the energy difference of the total electronic energies of the cation minus the neutral molecule. For the first ionization potential this simply amounts to a ΔSCF calculation. Then, the higher ionization potentials are obtained as the negatives of the correspondingly shifted Kohn-Sham eigenvalues. Importantly, this shift of the Kohn-Sham eigenvalue spectrum is not just ad hoc. In fact, it is formally necessary for the physically correct energetic adjustment of the eigenvalue spectrum as it results from ensemble density-functional theory. An analogous approach for electron affinities is equally well obtained and justified. To illustrate the practical benefits of the approach, we calculate the valence ionization energies of test sets of small- and medium-sized molecules and photoelectron spectra of medium-sized electron acceptor molecules using a typical semilocal (PBE) and two typical global hybrid functionals (B3LYP and PBE0). The potential adjusted B3LYP and PBE0 eigenvalues yield valence ionization potentials that are in very good agreement with experimental values, reaching an accuracy that is as good as the best G0W0 methods, however, at much lower computational costs. The potential adjusted PBE eigenvalues result in somewhat less accurate ionization energies, which, however, are almost as accurate as those obtained from the most commonly used G0W0 variants." @default.
- W2742227511 created "2017-08-17" @default.
- W2742227511 creator A5003006287 @default.
- W2742227511 creator A5005731986 @default.
- W2742227511 creator A5017575069 @default.
- W2742227511 creator A5050355592 @default.
- W2742227511 creator A5057094529 @default.
- W2742227511 creator A5067224843 @default.
- W2742227511 date "2017-09-14" @default.
- W2742227511 modified "2023-09-25" @default.
- W2742227511 title "Accurate Valence Ionization Energies from Kohn–Sham Eigenvalues with the Help of Potential Adjustors" @default.
- W2742227511 cites W144012304 @default.
- W2742227511 cites W1615960000 @default.
- W2742227511 cites W1909109164 @default.
- W2742227511 cites W1963742365 @default.
- W2742227511 cites W1965456600 @default.
- W2742227511 cites W1968241508 @default.
- W2742227511 cites W1970389302 @default.
- W2742227511 cites W1970512969 @default.
- W2742227511 cites W1973383114 @default.
- W2742227511 cites W1974943505 @default.
- W2742227511 cites W1976454203 @default.
- W2742227511 cites W1978627135 @default.
- W2742227511 cites W1979178919 @default.
- W2742227511 cites W1979208317 @default.
- W2742227511 cites W1980230790 @default.
- W2742227511 cites W1981368803 @default.
- W2742227511 cites W1986892587 @default.
- W2742227511 cites W1988091937 @default.
- W2742227511 cites W1992643859 @default.
- W2742227511 cites W1998613997 @default.
- W2742227511 cites W1999969709 @default.
- W2742227511 cites W2000826139 @default.
- W2742227511 cites W2001519390 @default.
- W2742227511 cites W2003209620 @default.
- W2742227511 cites W2007805650 @default.
- W2742227511 cites W2011327487 @default.
- W2742227511 cites W2012279747 @default.
- W2742227511 cites W2014094922 @default.
- W2742227511 cites W2017425597 @default.
- W2742227511 cites W2019173319 @default.
- W2742227511 cites W2020330902 @default.
- W2742227511 cites W2023390323 @default.
- W2742227511 cites W2025299424 @default.
- W2742227511 cites W2035253402 @default.
- W2742227511 cites W2038166012 @default.
- W2742227511 cites W2040184806 @default.
- W2742227511 cites W2046027452 @default.
- W2742227511 cites W2046668457 @default.
- W2742227511 cites W2050827839 @default.
- W2742227511 cites W2054839455 @default.
- W2742227511 cites W2061051838 @default.
- W2742227511 cites W2067710498 @default.
- W2742227511 cites W2077338572 @default.
- W2742227511 cites W2083526141 @default.
- W2742227511 cites W2086458318 @default.
- W2742227511 cites W2087306122 @default.
- W2742227511 cites W2088331368 @default.
- W2742227511 cites W2088428421 @default.
- W2742227511 cites W2089341531 @default.
- W2742227511 cites W2090802549 @default.
- W2742227511 cites W2090902604 @default.
- W2742227511 cites W2095012125 @default.
- W2742227511 cites W2097064669 @default.
- W2742227511 cites W2105693321 @default.
- W2742227511 cites W2109738979 @default.
- W2742227511 cites W2119547517 @default.
- W2742227511 cites W2121076213 @default.
- W2742227511 cites W2124098794 @default.
- W2742227511 cites W2143534614 @default.
- W2742227511 cites W2143981217 @default.
- W2742227511 cites W2148284063 @default.
- W2742227511 cites W2148424525 @default.
- W2742227511 cites W2168703680 @default.
- W2742227511 cites W2230728100 @default.
- W2742227511 cites W2257722334 @default.
- W2742227511 cites W2258170546 @default.
- W2742227511 cites W2265921518 @default.
- W2742227511 cites W2269755655 @default.
- W2742227511 cites W2315553524 @default.
- W2742227511 cites W2320692536 @default.
- W2742227511 cites W2321187402 @default.
- W2742227511 cites W2322701140 @default.
- W2742227511 cites W2328249636 @default.
- W2742227511 cites W2330925777 @default.
- W2742227511 cites W2332373649 @default.
- W2742227511 cites W2400808756 @default.
- W2742227511 cites W2469512782 @default.
- W2742227511 cites W2484320101 @default.
- W2742227511 cites W2507647977 @default.
- W2742227511 cites W2507946536 @default.
- W2742227511 cites W2521494112 @default.
- W2742227511 cites W2559947911 @default.
- W2742227511 cites W2564760152 @default.
- W2742227511 cites W2583939525 @default.
- W2742227511 cites W2773996121 @default.
- W2742227511 cites W3102558059 @default.
- W2742227511 cites W4300816443 @default.