Matches in SemOpenAlex for { <https://semopenalex.org/work/W2742306779> ?p ?o ?g. }
- W2742306779 abstract "The past decade has seen the emergence of many hyperspectral image (HSI) analysis algorithms based on graph theory and derived manifold coordinates. The performance of these algorithms is inextricably tied to the graphical model constructed from the spectral data, i.e., the community structure of the spectral data must be well represented to extract meaningful information. This paper provides a survey of many spectral graph construction techniques currently used by the hyperspectral community and discusses their advantages and disadvantages for hyperspectral analyses. A focus is provided on techniques influenced by spectral density from which the concept of community structure arises. Two inherently density-weighted graph construction techniques from the data mining literature, shared nearest neighbor (NN) and mutual proximity, are also introduced and compared as they have not been previously employed in HSI analyses. Density-based edge allocation is demonstrated to produce more uniform NN lists than nondensity-based techniques by demonstrating an increase in the number of intracluster edges and improved $k$ -NN classification performance. Imposing the mutuality constraint to symmetrify an adjacency matrix is demonstrated to be beneficial in most circumstances, especially in rural (less cluttered) scenes. Surprisingly, many complex edge-reweighting techniques are shown to slightly degrade NN list characteristics. An analysis suggests this condition is possibly attributable to the validity of characterizing spectral density by a single variable representing data scale. As such, these complex edge-reweighting techniques may need to be modified to increase their effectiveness, or simply not be used." @default.
- W2742306779 created "2017-08-17" @default.
- W2742306779 creator A5043317825 @default.
- W2742306779 creator A5045402760 @default.
- W2742306779 creator A5083064625 @default.
- W2742306779 date "2017-10-01" @default.
- W2742306779 modified "2023-09-27" @default.
- W2742306779 title "Spectral-Density-Based Graph Construction Techniques for Hyperspectral Image Analysis" @default.
- W2742306779 cites W1573335264 @default.
- W2742306779 cites W1573605934 @default.
- W2742306779 cites W1595303882 @default.
- W2742306779 cites W1672197616 @default.
- W2742306779 cites W1978430152 @default.
- W2742306779 cites W1987772085 @default.
- W2742306779 cites W2008945291 @default.
- W2742306779 cites W2020530004 @default.
- W2742306779 cites W2025307127 @default.
- W2742306779 cites W2038698365 @default.
- W2742306779 cites W2069302189 @default.
- W2742306779 cites W2073074210 @default.
- W2742306779 cites W2089923519 @default.
- W2742306779 cites W2096630704 @default.
- W2742306779 cites W2097073572 @default.
- W2742306779 cites W2115067661 @default.
- W2742306779 cites W2121947440 @default.
- W2742306779 cites W2124799437 @default.
- W2742306779 cites W2129662607 @default.
- W2742306779 cites W2132914434 @default.
- W2742306779 cites W2141966815 @default.
- W2742306779 cites W2144035851 @default.
- W2742306779 cites W2151090060 @default.
- W2742306779 cites W2152322845 @default.
- W2742306779 cites W2156167477 @default.
- W2742306779 cites W2156365280 @default.
- W2742306779 cites W2166372059 @default.
- W2742306779 cites W2168532736 @default.
- W2742306779 cites W2182038401 @default.
- W2742306779 cites W2241302494 @default.
- W2742306779 cites W2510585614 @default.
- W2742306779 cites W2526687242 @default.
- W2742306779 cites W2584841368 @default.
- W2742306779 cites W2620628311 @default.
- W2742306779 cites W2620750081 @default.
- W2742306779 cites W2971877878 @default.
- W2742306779 cites W3190089992 @default.
- W2742306779 cites W80917968 @default.
- W2742306779 cites W1993963192 @default.
- W2742306779 doi "https://doi.org/10.1109/tgrs.2017.2718547" @default.
- W2742306779 hasPublicationYear "2017" @default.
- W2742306779 type Work @default.
- W2742306779 sameAs 2742306779 @default.
- W2742306779 citedByCount "12" @default.
- W2742306779 countsByYear W27423067792018 @default.
- W2742306779 countsByYear W27423067792020 @default.
- W2742306779 countsByYear W27423067792022 @default.
- W2742306779 crossrefType "journal-article" @default.
- W2742306779 hasAuthorship W2742306779A5043317825 @default.
- W2742306779 hasAuthorship W2742306779A5045402760 @default.
- W2742306779 hasAuthorship W2742306779A5083064625 @default.
- W2742306779 hasConcept C110484373 @default.
- W2742306779 hasConcept C11413529 @default.
- W2742306779 hasConcept C114614502 @default.
- W2742306779 hasConcept C124101348 @default.
- W2742306779 hasConcept C132525143 @default.
- W2742306779 hasConcept C153180895 @default.
- W2742306779 hasConcept C154945302 @default.
- W2742306779 hasConcept C159078339 @default.
- W2742306779 hasConcept C180356752 @default.
- W2742306779 hasConcept C33923547 @default.
- W2742306779 hasConcept C41008148 @default.
- W2742306779 hasConcept C80444323 @default.
- W2742306779 hasConcept C88230418 @default.
- W2742306779 hasConceptScore W2742306779C110484373 @default.
- W2742306779 hasConceptScore W2742306779C11413529 @default.
- W2742306779 hasConceptScore W2742306779C114614502 @default.
- W2742306779 hasConceptScore W2742306779C124101348 @default.
- W2742306779 hasConceptScore W2742306779C132525143 @default.
- W2742306779 hasConceptScore W2742306779C153180895 @default.
- W2742306779 hasConceptScore W2742306779C154945302 @default.
- W2742306779 hasConceptScore W2742306779C159078339 @default.
- W2742306779 hasConceptScore W2742306779C180356752 @default.
- W2742306779 hasConceptScore W2742306779C33923547 @default.
- W2742306779 hasConceptScore W2742306779C41008148 @default.
- W2742306779 hasConceptScore W2742306779C80444323 @default.
- W2742306779 hasConceptScore W2742306779C88230418 @default.
- W2742306779 hasLocation W27423067791 @default.
- W2742306779 hasOpenAccess W2742306779 @default.
- W2742306779 hasPrimaryLocation W27423067791 @default.
- W2742306779 hasRelatedWork W172438325 @default.
- W2742306779 hasRelatedWork W1975845054 @default.
- W2742306779 hasRelatedWork W2181697047 @default.
- W2742306779 hasRelatedWork W2282292208 @default.
- W2742306779 hasRelatedWork W2597644092 @default.
- W2742306779 hasRelatedWork W2765571820 @default.
- W2742306779 hasRelatedWork W2792756998 @default.
- W2742306779 hasRelatedWork W2803177391 @default.
- W2742306779 hasRelatedWork W2804670878 @default.
- W2742306779 hasRelatedWork W2891082207 @default.
- W2742306779 hasRelatedWork W2901562115 @default.
- W2742306779 hasRelatedWork W2906616692 @default.