Matches in SemOpenAlex for { <https://semopenalex.org/work/W2742470504> ?p ?o ?g. }
- W2742470504 endingPage "609" @default.
- W2742470504 startingPage "599" @default.
- W2742470504 abstract "Recent advances in bioinformatics have made high-throughput microbiome data widely available, and new statistical tools are required to maximize the information gained from these data. For example, analysis of high-dimensional microbiome data from designed experiments remains an open area in microbiome research. Contemporary analyses work on metrics that summarize collective properties of the microbiome, but such reductions preclude inference on the fine-scale effects of environmental stimuli on individual microbial taxa. Other approaches model the proportions or counts of individual taxa as response variables in mixed models, but these methods fail to account for complex correlation patterns among microbial communities. In this article, we propose a novel Bayesian mixed-effects model that exploits cross-taxa correlations within the microbiome, a model we call microbiome mixed model (MIMIX). MIMIX offers global tests for treatment effects, local tests and estimation of treatment effects on individual taxa, quantification of the relative contribution from heterogeneous sources to microbiome variability, and identification of latent ecological subcommunities in the microbiome. MIMIX is tailored to large microbiome experiments using a combination of Bayesian factor analysis to efficiently represent dependence between taxa and Bayesian variable selection methods to achieve sparsity. We demonstrate the model using a simulation experiment and on a 2 × 2 factorial experiment of the effects of nutrient supplement and herbivore exclusion on the foliar fungal microbiome of Andropogon gerardii, a perennial bunchgrass, as part of the global Nutrient Network research initiative. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement." @default.
- W2742470504 created "2017-08-17" @default.
- W2742470504 creator A5003940798 @default.
- W2742470504 creator A5016146494 @default.
- W2742470504 creator A5054425806 @default.
- W2742470504 creator A5069089050 @default.
- W2742470504 creator A5083979761 @default.
- W2742470504 date "2019-07-05" @default.
- W2742470504 modified "2023-10-11" @default.
- W2742470504 title "MIMIX: A Bayesian Mixed-Effects Model for Microbiome Data From Designed Experiments" @default.
- W2742470504 cites W1488156261 @default.
- W2742470504 cites W1503352355 @default.
- W2742470504 cites W1945370545 @default.
- W2742470504 cites W1998516964 @default.
- W2742470504 cites W1999974018 @default.
- W2742470504 cites W2002211660 @default.
- W2742470504 cites W2004014148 @default.
- W2742470504 cites W2034189943 @default.
- W2742470504 cites W2053609837 @default.
- W2742470504 cites W2084388810 @default.
- W2742470504 cites W2118526609 @default.
- W2742470504 cites W2120575449 @default.
- W2742470504 cites W2140580533 @default.
- W2742470504 cites W2147618390 @default.
- W2742470504 cites W2150149003 @default.
- W2742470504 cites W2163386593 @default.
- W2742470504 cites W2170024099 @default.
- W2742470504 cites W2328009527 @default.
- W2742470504 cites W2398800349 @default.
- W2742470504 cites W2567421046 @default.
- W2742470504 cites W2587304885 @default.
- W2742470504 cites W2954040150 @default.
- W2742470504 cites W3098806227 @default.
- W2742470504 cites W3102089015 @default.
- W2742470504 cites W4250212474 @default.
- W2742470504 cites W4299542564 @default.
- W2742470504 doi "https://doi.org/10.1080/01621459.2019.1626242" @default.
- W2742470504 hasPublicationYear "2019" @default.
- W2742470504 type Work @default.
- W2742470504 sameAs 2742470504 @default.
- W2742470504 citedByCount "17" @default.
- W2742470504 countsByYear W27424705042019 @default.
- W2742470504 countsByYear W27424705042020 @default.
- W2742470504 countsByYear W27424705042021 @default.
- W2742470504 countsByYear W27424705042022 @default.
- W2742470504 countsByYear W27424705042023 @default.
- W2742470504 crossrefType "journal-article" @default.
- W2742470504 hasAuthorship W2742470504A5003940798 @default.
- W2742470504 hasAuthorship W2742470504A5016146494 @default.
- W2742470504 hasAuthorship W2742470504A5054425806 @default.
- W2742470504 hasAuthorship W2742470504A5069089050 @default.
- W2742470504 hasAuthorship W2742470504A5083979761 @default.
- W2742470504 hasBestOaLocation W27424705042 @default.
- W2742470504 hasConcept C105795698 @default.
- W2742470504 hasConcept C107673813 @default.
- W2742470504 hasConcept C116834253 @default.
- W2742470504 hasConcept C119857082 @default.
- W2742470504 hasConcept C143121216 @default.
- W2742470504 hasConcept C154945302 @default.
- W2742470504 hasConcept C18903297 @default.
- W2742470504 hasConcept C190944805 @default.
- W2742470504 hasConcept C2776214188 @default.
- W2742470504 hasConcept C2781162219 @default.
- W2742470504 hasConcept C33923547 @default.
- W2742470504 hasConcept C41008148 @default.
- W2742470504 hasConcept C5274069 @default.
- W2742470504 hasConcept C60644358 @default.
- W2742470504 hasConcept C86803240 @default.
- W2742470504 hasConcept C91478284 @default.
- W2742470504 hasConceptScore W2742470504C105795698 @default.
- W2742470504 hasConceptScore W2742470504C107673813 @default.
- W2742470504 hasConceptScore W2742470504C116834253 @default.
- W2742470504 hasConceptScore W2742470504C119857082 @default.
- W2742470504 hasConceptScore W2742470504C143121216 @default.
- W2742470504 hasConceptScore W2742470504C154945302 @default.
- W2742470504 hasConceptScore W2742470504C18903297 @default.
- W2742470504 hasConceptScore W2742470504C190944805 @default.
- W2742470504 hasConceptScore W2742470504C2776214188 @default.
- W2742470504 hasConceptScore W2742470504C2781162219 @default.
- W2742470504 hasConceptScore W2742470504C33923547 @default.
- W2742470504 hasConceptScore W2742470504C41008148 @default.
- W2742470504 hasConceptScore W2742470504C5274069 @default.
- W2742470504 hasConceptScore W2742470504C60644358 @default.
- W2742470504 hasConceptScore W2742470504C86803240 @default.
- W2742470504 hasConceptScore W2742470504C91478284 @default.
- W2742470504 hasIssue "530" @default.
- W2742470504 hasLocation W27424705041 @default.
- W2742470504 hasLocation W27424705042 @default.
- W2742470504 hasLocation W27424705043 @default.
- W2742470504 hasOpenAccess W2742470504 @default.
- W2742470504 hasPrimaryLocation W27424705041 @default.
- W2742470504 hasRelatedWork W1968369492 @default.
- W2742470504 hasRelatedWork W2043102924 @default.
- W2742470504 hasRelatedWork W2315403509 @default.
- W2742470504 hasRelatedWork W2391004329 @default.
- W2742470504 hasRelatedWork W2467097829 @default.
- W2742470504 hasRelatedWork W2624135745 @default.
- W2742470504 hasRelatedWork W2761818597 @default.