Matches in SemOpenAlex for { <https://semopenalex.org/work/W2742477205> ?p ?o ?g. }
- W2742477205 endingPage "645" @default.
- W2742477205 startingPage "640" @default.
- W2742477205 abstract "Using molecular simulation for adsorbent screening is computationally expensive and thus prohibitive to materials discovery. Machine learning (ML) algorithms trained on fundamental material properties can potentially provide quick and accurate methods for screening purposes. Prior efforts have focused on structural descriptors for use with ML. In this work, the use of chemical descriptors, in addition to structural descriptors, was introduced for adsorption analysis. Evaluation of structural and chemical descriptors coupled with various ML algorithms, including decision tree, Poisson regression, support vector machine and random forest, were carried out to predict methane uptake on hypothetical metal organic frameworks. To highlight their predictive capabilities, ML models were trained on 8% of a data set consisting of 130,398 MOFs and then tested on the remaining 92% to predict methane adsorption capacities. When structural and chemical descriptors were jointly used as ML input, the random forest model with 10-fold cross validation proved to be superior to the other ML approaches, with an R2 of 0.98 and a mean absolute percent error of about 7%. The training and prediction using the random forest algorithm for adsorption capacity estimation of all 130,398 MOFs took approximately 2 h on a single personal computer, several orders of magnitude faster than actual molecular simulations on high-performance computing clusters." @default.
- W2742477205 created "2017-08-17" @default.
- W2742477205 creator A5029171735 @default.
- W2742477205 creator A5030445732 @default.
- W2742477205 creator A5031575603 @default.
- W2742477205 creator A5031675415 @default.
- W2742477205 creator A5080625391 @default.
- W2742477205 date "2017-09-05" @default.
- W2742477205 modified "2023-10-06" @default.
- W2742477205 title "Machine Learning Using Combined Structural and Chemical Descriptors for Prediction of Methane Adsorption Performance of Metal Organic Frameworks (MOFs)" @default.
- W2742477205 cites W1930624869 @default.
- W2742477205 cites W1963883777 @default.
- W2742477205 cites W1973628995 @default.
- W2742477205 cites W1985053158 @default.
- W2742477205 cites W1995346641 @default.
- W2742477205 cites W2008962744 @default.
- W2742477205 cites W2009317314 @default.
- W2742477205 cites W2010560519 @default.
- W2742477205 cites W2025734933 @default.
- W2742477205 cites W2036418946 @default.
- W2742477205 cites W2051311193 @default.
- W2742477205 cites W2055974394 @default.
- W2742477205 cites W2073738451 @default.
- W2742477205 cites W2083655694 @default.
- W2742477205 cites W2084266203 @default.
- W2742477205 cites W2091161882 @default.
- W2742477205 cites W2093699236 @default.
- W2742477205 cites W2100716186 @default.
- W2742477205 cites W2101000826 @default.
- W2742477205 cites W2128302979 @default.
- W2742477205 cites W2138085558 @default.
- W2742477205 cites W2138511470 @default.
- W2742477205 cites W2139212933 @default.
- W2742477205 cites W2140122548 @default.
- W2742477205 cites W2141055534 @default.
- W2742477205 cites W2148931917 @default.
- W2742477205 cites W2151971404 @default.
- W2742477205 cites W2157942880 @default.
- W2742477205 cites W2159435429 @default.
- W2742477205 cites W2163755622 @default.
- W2742477205 cites W2316126360 @default.
- W2742477205 cites W2317125696 @default.
- W2742477205 cites W2332703416 @default.
- W2742477205 cites W2421707041 @default.
- W2742477205 cites W2610740470 @default.
- W2742477205 cites W2911964244 @default.
- W2742477205 cites W4239510810 @default.
- W2742477205 cites W4249036775 @default.
- W2742477205 cites W4253253667 @default.
- W2742477205 doi "https://doi.org/10.1021/acscombsci.7b00056" @default.
- W2742477205 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28800219" @default.
- W2742477205 hasPublicationYear "2017" @default.
- W2742477205 type Work @default.
- W2742477205 sameAs 2742477205 @default.
- W2742477205 citedByCount "139" @default.
- W2742477205 countsByYear W27424772052018 @default.
- W2742477205 countsByYear W27424772052019 @default.
- W2742477205 countsByYear W27424772052020 @default.
- W2742477205 countsByYear W27424772052021 @default.
- W2742477205 countsByYear W27424772052022 @default.
- W2742477205 countsByYear W27424772052023 @default.
- W2742477205 crossrefType "journal-article" @default.
- W2742477205 hasAuthorship W2742477205A5029171735 @default.
- W2742477205 hasAuthorship W2742477205A5030445732 @default.
- W2742477205 hasAuthorship W2742477205A5031575603 @default.
- W2742477205 hasAuthorship W2742477205A5031675415 @default.
- W2742477205 hasAuthorship W2742477205A5080625391 @default.
- W2742477205 hasConcept C119857082 @default.
- W2742477205 hasConcept C12267149 @default.
- W2742477205 hasConcept C124101348 @default.
- W2742477205 hasConcept C150394285 @default.
- W2742477205 hasConcept C154945302 @default.
- W2742477205 hasConcept C164126121 @default.
- W2742477205 hasConcept C164923092 @default.
- W2742477205 hasConcept C169258074 @default.
- W2742477205 hasConcept C178790620 @default.
- W2742477205 hasConcept C179366358 @default.
- W2742477205 hasConcept C185592680 @default.
- W2742477205 hasConcept C186060115 @default.
- W2742477205 hasConcept C41008148 @default.
- W2742477205 hasConcept C516920438 @default.
- W2742477205 hasConcept C84525736 @default.
- W2742477205 hasConcept C86803240 @default.
- W2742477205 hasConceptScore W2742477205C119857082 @default.
- W2742477205 hasConceptScore W2742477205C12267149 @default.
- W2742477205 hasConceptScore W2742477205C124101348 @default.
- W2742477205 hasConceptScore W2742477205C150394285 @default.
- W2742477205 hasConceptScore W2742477205C154945302 @default.
- W2742477205 hasConceptScore W2742477205C164126121 @default.
- W2742477205 hasConceptScore W2742477205C164923092 @default.
- W2742477205 hasConceptScore W2742477205C169258074 @default.
- W2742477205 hasConceptScore W2742477205C178790620 @default.
- W2742477205 hasConceptScore W2742477205C179366358 @default.
- W2742477205 hasConceptScore W2742477205C185592680 @default.
- W2742477205 hasConceptScore W2742477205C186060115 @default.
- W2742477205 hasConceptScore W2742477205C41008148 @default.
- W2742477205 hasConceptScore W2742477205C516920438 @default.
- W2742477205 hasConceptScore W2742477205C84525736 @default.