Matches in SemOpenAlex for { <https://semopenalex.org/work/W2742495185> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2742495185 abstract "The network intrusion detection techniques are important to prevent our system and network from malicious behaviors. In order to improve accuracy of network intrusion detection, machine learning, feature selection and optimization methods have been used, and the result tell us that the combination of machine learning and feature selection can improve accuracy. In this study, we developed a new machine learning approach for predicting network intrusion based on random forest and support vector machine. Since there were many potential features for network intrusion classification, random forest were used for feature selection based on variable importance score. We found that the host-based statistical features of network flow play an important role in predicting network intrusion. The performance of the support vector machine which used the 14 selected features on KDD 99 dataset has been evaluated by comparing it with the total(41) features and popular classifiers. The result showed that the selected features can achieve higher attack detection rate and it can be one of the competitive classifier for network intrusion detection." @default.
- W2742495185 created "2017-08-17" @default.
- W2742495185 creator A5068452582 @default.
- W2742495185 creator A5078991585 @default.
- W2742495185 creator A5085588608 @default.
- W2742495185 date "2017-07-01" @default.
- W2742495185 modified "2023-10-14" @default.
- W2742495185 title "Network Intrusion Detection Based on Random Forest and Support Vector Machine" @default.
- W2742495185 cites W1978779053 @default.
- W2742495185 cites W2056982990 @default.
- W2742495185 cites W2078559757 @default.
- W2742495185 cites W2084496302 @default.
- W2742495185 cites W2153635508 @default.
- W2742495185 cites W2911964244 @default.
- W2742495185 doi "https://doi.org/10.1109/cse-euc.2017.118" @default.
- W2742495185 hasPublicationYear "2017" @default.
- W2742495185 type Work @default.
- W2742495185 sameAs 2742495185 @default.
- W2742495185 citedByCount "56" @default.
- W2742495185 countsByYear W27424951852018 @default.
- W2742495185 countsByYear W27424951852019 @default.
- W2742495185 countsByYear W27424951852020 @default.
- W2742495185 countsByYear W27424951852021 @default.
- W2742495185 countsByYear W27424951852022 @default.
- W2742495185 countsByYear W27424951852023 @default.
- W2742495185 crossrefType "proceedings-article" @default.
- W2742495185 hasAuthorship W2742495185A5068452582 @default.
- W2742495185 hasAuthorship W2742495185A5078991585 @default.
- W2742495185 hasAuthorship W2742495185A5085588608 @default.
- W2742495185 hasConcept C119857082 @default.
- W2742495185 hasConcept C12267149 @default.
- W2742495185 hasConcept C124101348 @default.
- W2742495185 hasConcept C148483581 @default.
- W2742495185 hasConcept C154945302 @default.
- W2742495185 hasConcept C169258074 @default.
- W2742495185 hasConcept C182590292 @default.
- W2742495185 hasConcept C31258907 @default.
- W2742495185 hasConcept C35525427 @default.
- W2742495185 hasConcept C41008148 @default.
- W2742495185 hasConcept C95623464 @default.
- W2742495185 hasConceptScore W2742495185C119857082 @default.
- W2742495185 hasConceptScore W2742495185C12267149 @default.
- W2742495185 hasConceptScore W2742495185C124101348 @default.
- W2742495185 hasConceptScore W2742495185C148483581 @default.
- W2742495185 hasConceptScore W2742495185C154945302 @default.
- W2742495185 hasConceptScore W2742495185C169258074 @default.
- W2742495185 hasConceptScore W2742495185C182590292 @default.
- W2742495185 hasConceptScore W2742495185C31258907 @default.
- W2742495185 hasConceptScore W2742495185C35525427 @default.
- W2742495185 hasConceptScore W2742495185C41008148 @default.
- W2742495185 hasConceptScore W2742495185C95623464 @default.
- W2742495185 hasLocation W27424951851 @default.
- W2742495185 hasOpenAccess W2742495185 @default.
- W2742495185 hasPrimaryLocation W27424951851 @default.
- W2742495185 hasRelatedWork W2532741770 @default.
- W2742495185 hasRelatedWork W2742495185 @default.
- W2742495185 hasRelatedWork W2985924212 @default.
- W2742495185 hasRelatedWork W3034132578 @default.
- W2742495185 hasRelatedWork W3195168932 @default.
- W2742495185 hasRelatedWork W3200179079 @default.
- W2742495185 hasRelatedWork W4288767684 @default.
- W2742495185 hasRelatedWork W4293525103 @default.
- W2742495185 hasRelatedWork W4327511089 @default.
- W2742495185 hasRelatedWork W16836940 @default.
- W2742495185 isParatext "false" @default.
- W2742495185 isRetracted "false" @default.
- W2742495185 magId "2742495185" @default.
- W2742495185 workType "article" @default.