Matches in SemOpenAlex for { <https://semopenalex.org/work/W2742499146> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2742499146 abstract "Spin-transfer-torque random access memory (STT RAM) is a promising memory technology due to its scalability, endurance and non-volatility. Addressing the process induced variations during realistic device fabrication process is a challenge, while trying to meet performance specifications, more so with the technology scaling leading to smaller device dimensions. In a simplified picture, the performance parameters of an STT RAM cell such as switching current density for a given pulse length or the switching delay for a given applied current density, depend on a variety of material parameters such as magnetic anisotropy and damping constant of the “free layer” (FL), the information storage layer. Besides material parameters, device dimensions, such as the diameter and the thickness of FL also vary about the target values, due to imperfections during thin-film deposition, lithography and ion-beam etching, among other process steps. To consider process variations in such parameters, Monte-Carlo simulations can be used, where each of the parameters can be, e.g., a random number from a Gaussian distribution about its target value. However, a modest number of 5 parameters and 100 values for each of them would require (102)5 = 1010 device simulations, and would be computationally infeasible for e.g., micromagnetic simulation. A possible route to circumvent such a prohibitively large computational load would be to use a compact model [1, 2]. However, a method like this relies on the so-called macrospin approximation and assumes spins across FL to be parallel to each other at all times during switching and might not be a true representation. Also, for many emerging devices, a compact model still is not available. Machine learning (ML) has been used in the past to model array of resistive random access memory (RRAM) [3]. In this work, we propose an ML driven simulation methodology to take the effect of process variation into account using micromagnetic simulations with reasonable computational effort. We employ support vector regression (SVR), a method used in supervised learning to anticipate the behavior of a system based on previously obtained “training data”, to predict performance of an STT RAM cell. We use STT RAM as a model system, although the proposed scheme should be usable for other devices too." @default.
- W2742499146 created "2017-08-17" @default.
- W2742499146 creator A5062274882 @default.
- W2742499146 creator A5064689433 @default.
- W2742499146 creator A5077465295 @default.
- W2742499146 creator A5082169837 @default.
- W2742499146 creator A5083171744 @default.
- W2742499146 date "2017-06-01" @default.
- W2742499146 modified "2023-09-23" @default.
- W2742499146 title "Machine learning for variability aware statistical device design: The case of perpendicular spin-transfer-torque random access memory" @default.
- W2742499146 doi "https://doi.org/10.1109/drc.2017.7999435" @default.
- W2742499146 hasPublicationYear "2017" @default.
- W2742499146 type Work @default.
- W2742499146 sameAs 2742499146 @default.
- W2742499146 citedByCount "0" @default.
- W2742499146 crossrefType "proceedings-article" @default.
- W2742499146 hasAuthorship W2742499146A5062274882 @default.
- W2742499146 hasAuthorship W2742499146A5064689433 @default.
- W2742499146 hasAuthorship W2742499146A5077465295 @default.
- W2742499146 hasAuthorship W2742499146A5082169837 @default.
- W2742499146 hasAuthorship W2742499146A5083171744 @default.
- W2742499146 hasConcept C105795698 @default.
- W2742499146 hasConcept C115260700 @default.
- W2742499146 hasConcept C121332964 @default.
- W2742499146 hasConcept C127413603 @default.
- W2742499146 hasConcept C144171764 @default.
- W2742499146 hasConcept C191897082 @default.
- W2742499146 hasConcept C192191005 @default.
- W2742499146 hasConcept C192562407 @default.
- W2742499146 hasConcept C19499675 @default.
- W2742499146 hasConcept C24326235 @default.
- W2742499146 hasConcept C2524010 @default.
- W2742499146 hasConcept C2778596170 @default.
- W2742499146 hasConcept C32546565 @default.
- W2742499146 hasConcept C33923547 @default.
- W2742499146 hasConcept C41008148 @default.
- W2742499146 hasConcept C48044578 @default.
- W2742499146 hasConcept C609986 @default.
- W2742499146 hasConcept C62520636 @default.
- W2742499146 hasConcept C77088390 @default.
- W2742499146 hasConcept C97355855 @default.
- W2742499146 hasConcept C99844830 @default.
- W2742499146 hasConceptScore W2742499146C105795698 @default.
- W2742499146 hasConceptScore W2742499146C115260700 @default.
- W2742499146 hasConceptScore W2742499146C121332964 @default.
- W2742499146 hasConceptScore W2742499146C127413603 @default.
- W2742499146 hasConceptScore W2742499146C144171764 @default.
- W2742499146 hasConceptScore W2742499146C191897082 @default.
- W2742499146 hasConceptScore W2742499146C192191005 @default.
- W2742499146 hasConceptScore W2742499146C192562407 @default.
- W2742499146 hasConceptScore W2742499146C19499675 @default.
- W2742499146 hasConceptScore W2742499146C24326235 @default.
- W2742499146 hasConceptScore W2742499146C2524010 @default.
- W2742499146 hasConceptScore W2742499146C2778596170 @default.
- W2742499146 hasConceptScore W2742499146C32546565 @default.
- W2742499146 hasConceptScore W2742499146C33923547 @default.
- W2742499146 hasConceptScore W2742499146C41008148 @default.
- W2742499146 hasConceptScore W2742499146C48044578 @default.
- W2742499146 hasConceptScore W2742499146C609986 @default.
- W2742499146 hasConceptScore W2742499146C62520636 @default.
- W2742499146 hasConceptScore W2742499146C77088390 @default.
- W2742499146 hasConceptScore W2742499146C97355855 @default.
- W2742499146 hasConceptScore W2742499146C99844830 @default.
- W2742499146 hasLocation W27424991461 @default.
- W2742499146 hasOpenAccess W2742499146 @default.
- W2742499146 hasPrimaryLocation W27424991461 @default.
- W2742499146 hasRelatedWork W1876660769 @default.
- W2742499146 hasRelatedWork W2328661178 @default.
- W2742499146 hasRelatedWork W2491625531 @default.
- W2742499146 hasRelatedWork W2562344559 @default.
- W2742499146 hasRelatedWork W2588809805 @default.
- W2742499146 hasRelatedWork W2613305001 @default.
- W2742499146 hasRelatedWork W27803067 @default.
- W2742499146 hasRelatedWork W2783769955 @default.
- W2742499146 hasRelatedWork W2909023678 @default.
- W2742499146 hasRelatedWork W2957950922 @default.
- W2742499146 hasRelatedWork W2970642011 @default.
- W2742499146 hasRelatedWork W3050945359 @default.
- W2742499146 hasRelatedWork W3082677097 @default.
- W2742499146 hasRelatedWork W3094299580 @default.
- W2742499146 hasRelatedWork W3103724836 @default.
- W2742499146 hasRelatedWork W3105380050 @default.
- W2742499146 hasRelatedWork W3110690547 @default.
- W2742499146 hasRelatedWork W3149183989 @default.
- W2742499146 hasRelatedWork W3162991697 @default.
- W2742499146 hasRelatedWork W368036941 @default.
- W2742499146 isParatext "false" @default.
- W2742499146 isRetracted "false" @default.
- W2742499146 magId "2742499146" @default.
- W2742499146 workType "article" @default.