Matches in SemOpenAlex for { <https://semopenalex.org/work/W2742510161> ?p ?o ?g. }
- W2742510161 abstract "We present a Bayesian formulation of weighted stochastic block models that can be used to infer the large-scale modular structure of weighted networks, including their hierarchical organization. Our method is nonparametric, and thus does not require the prior knowledge of the number of groups or other dimensions of the model, which are instead inferred from data. We give a comprehensive treatment of different kinds of edge weights (i.e., continuous or discrete, signed or unsigned, bounded or unbounded), as well as arbitrary weight transformations, and describe an unsupervised model selection approach to choose the best network description. We illustrate the application of our method to a variety of empirical weighted networks, such as global migrations, voting patterns in congress, and neural connections in the human brain." @default.
- W2742510161 created "2017-08-17" @default.
- W2742510161 creator A5022414084 @default.
- W2742510161 date "2018-01-16" @default.
- W2742510161 modified "2023-10-14" @default.
- W2742510161 title "Nonparametric weighted stochastic block models" @default.
- W2742510161 cites W1871689251 @default.
- W2742510161 cites W1964757651 @default.
- W2742510161 cites W1971421925 @default.
- W2742510161 cites W1972675431 @default.
- W2742510161 cites W1978787982 @default.
- W2742510161 cites W1994321911 @default.
- W2742510161 cites W2021947606 @default.
- W2742510161 cites W2033193852 @default.
- W2742510161 cites W2038224551 @default.
- W2742510161 cites W2039000865 @default.
- W2742510161 cites W2043376985 @default.
- W2742510161 cites W2049294562 @default.
- W2742510161 cites W2053838094 @default.
- W2742510161 cites W2056760934 @default.
- W2742510161 cites W2102907934 @default.
- W2742510161 cites W2111642621 @default.
- W2742510161 cites W2119998616 @default.
- W2742510161 cites W2127048411 @default.
- W2742510161 cites W2128366083 @default.
- W2742510161 cites W2133939386 @default.
- W2742510161 cites W2138309709 @default.
- W2742510161 cites W2145640629 @default.
- W2742510161 cites W2169148563 @default.
- W2742510161 cites W2286126108 @default.
- W2742510161 cites W2339289145 @default.
- W2742510161 cites W2375070860 @default.
- W2742510161 cites W2531871281 @default.
- W2742510161 cites W3100932158 @default.
- W2742510161 cites W3101685104 @default.
- W2742510161 cites W3102085030 @default.
- W2742510161 cites W3106209931 @default.
- W2742510161 cites W3125564425 @default.
- W2742510161 cites W3126033509 @default.
- W2742510161 cites W4256094090 @default.
- W2742510161 cites W4299551239 @default.
- W2742510161 cites W745973578 @default.
- W2742510161 doi "https://doi.org/10.1103/physreve.97.012306" @default.
- W2742510161 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29448436" @default.
- W2742510161 hasPublicationYear "2018" @default.
- W2742510161 type Work @default.
- W2742510161 sameAs 2742510161 @default.
- W2742510161 citedByCount "65" @default.
- W2742510161 countsByYear W27425101612018 @default.
- W2742510161 countsByYear W27425101612019 @default.
- W2742510161 countsByYear W27425101612020 @default.
- W2742510161 countsByYear W27425101612021 @default.
- W2742510161 countsByYear W27425101612022 @default.
- W2742510161 countsByYear W27425101612023 @default.
- W2742510161 crossrefType "journal-article" @default.
- W2742510161 hasAuthorship W2742510161A5022414084 @default.
- W2742510161 hasBestOaLocation W27425101612 @default.
- W2742510161 hasConcept C101468663 @default.
- W2742510161 hasConcept C102366305 @default.
- W2742510161 hasConcept C111919701 @default.
- W2742510161 hasConcept C114614502 @default.
- W2742510161 hasConcept C134306372 @default.
- W2742510161 hasConcept C136197465 @default.
- W2742510161 hasConcept C149782125 @default.
- W2742510161 hasConcept C154945302 @default.
- W2742510161 hasConcept C17744445 @default.
- W2742510161 hasConcept C199539241 @default.
- W2742510161 hasConcept C2777210771 @default.
- W2742510161 hasConcept C2779982251 @default.
- W2742510161 hasConcept C33923547 @default.
- W2742510161 hasConcept C34388435 @default.
- W2742510161 hasConcept C41008148 @default.
- W2742510161 hasConcept C50644808 @default.
- W2742510161 hasConcept C520049643 @default.
- W2742510161 hasConcept C73555534 @default.
- W2742510161 hasConcept C80444323 @default.
- W2742510161 hasConcept C81917197 @default.
- W2742510161 hasConcept C94625758 @default.
- W2742510161 hasConceptScore W2742510161C101468663 @default.
- W2742510161 hasConceptScore W2742510161C102366305 @default.
- W2742510161 hasConceptScore W2742510161C111919701 @default.
- W2742510161 hasConceptScore W2742510161C114614502 @default.
- W2742510161 hasConceptScore W2742510161C134306372 @default.
- W2742510161 hasConceptScore W2742510161C136197465 @default.
- W2742510161 hasConceptScore W2742510161C149782125 @default.
- W2742510161 hasConceptScore W2742510161C154945302 @default.
- W2742510161 hasConceptScore W2742510161C17744445 @default.
- W2742510161 hasConceptScore W2742510161C199539241 @default.
- W2742510161 hasConceptScore W2742510161C2777210771 @default.
- W2742510161 hasConceptScore W2742510161C2779982251 @default.
- W2742510161 hasConceptScore W2742510161C33923547 @default.
- W2742510161 hasConceptScore W2742510161C34388435 @default.
- W2742510161 hasConceptScore W2742510161C41008148 @default.
- W2742510161 hasConceptScore W2742510161C50644808 @default.
- W2742510161 hasConceptScore W2742510161C520049643 @default.
- W2742510161 hasConceptScore W2742510161C73555534 @default.
- W2742510161 hasConceptScore W2742510161C80444323 @default.
- W2742510161 hasConceptScore W2742510161C81917197 @default.
- W2742510161 hasConceptScore W2742510161C94625758 @default.
- W2742510161 hasIssue "1" @default.