Matches in SemOpenAlex for { <https://semopenalex.org/work/W2742733384> ?p ?o ?g. }
- W2742733384 endingPage "127" @default.
- W2742733384 startingPage "118" @default.
- W2742733384 abstract "Due to global climate change, marine phytoplankton will likely experience low pH (ocean acidification), high temperatures and high irradiance in the future. Here, this work report the results of a batch culture experiment conducted to study the interactive effects of elevated CO2, increased temperature and high irradiance on the harmful dinoflagellate Akashiwo sanguinea, isolated at Dongtou Island, Eastern China Sea. The A. sanguinea cells were acclimated in high CO2 condition for about three months before testing the responses of cells to a full factorial matrix experimentation during a 7-day period. This study measured the variation in physiological parameters and hemolytic activity in 8 treatments, representing full factorial combinations of 2 levels each of exposure to CO2 (400 and 1000 μatm), temperature (20 and 28 °C) and irradiance (50 and 200 μmol photons m−2 s−1). Sustained growth of A. sanguinea occurred in all treatments, but high CO2 (HC) stimulated faster growth than low CO2 (LC). The pigments (chlorophyll a and carotenoid) decreased in all HC treatments. The quantum yield (Fv/Fm) declined slightly in all high-temperature (HT) treatments. High irradiance (HL) induced the accumulation of ultraviolet-absorbing compounds (UVabc) irrespective of temperature and CO2. The hemolytic activity in the LC treatments, however, declined when exposed to HT and HL, but HC alleviated the adverse effects of HT and HL on hemolytic activity. All HC and HL conditions and the combinations of high temperature*high light (HTHL) and high CO2*high temperature*high light (HCHTHL) positively affected the growth in comparison to the low CO2*low temperature*low light (LCLTLL) treatment. High temperature (HT), high light (HL) and a combination of HT*HL, however, negatively impacted hemolytic activity. CO2 was the main factor that affected the growth and hemolytic activity. There were no significant interactive effects of CO2*temperature*irradiance on growth, pigment, Fv/Fm or hemolytic activity, but there were effects on Pm, α, and Ek. If these results are extrapolated to the natural environment, it can be hypothesized that A. sanguinea cells will benefit from the combination of ocean acidification, warming, and high irradiance that are likely to occur under future climate change. It is assumed that faster growth and higher hemolytic activity and UVabc of this species will occur under future conditions compared with those the current CO2 (400 μatm) and temperature (20 °C) conditions." @default.
- W2742733384 created "2017-08-17" @default.
- W2742733384 creator A5033020983 @default.
- W2742733384 creator A5033213328 @default.
- W2742733384 creator A5062474380 @default.
- W2742733384 creator A5074628545 @default.
- W2742733384 date "2017-09-01" @default.
- W2742733384 modified "2023-09-27" @default.
- W2742733384 title "The dinoflagellate Akashiwo sanguinea will benefit from future climate change: The interactive effects of ocean acidification, warming and high irradiance on photophysiology and hemolytic activity" @default.
- W2742733384 cites W1132166020 @default.
- W2742733384 cites W1943419543 @default.
- W2742733384 cites W1966636533 @default.
- W2742733384 cites W1973095441 @default.
- W2742733384 cites W1976698188 @default.
- W2742733384 cites W1978092976 @default.
- W2742733384 cites W1978886837 @default.
- W2742733384 cites W1980583674 @default.
- W2742733384 cites W1981690366 @default.
- W2742733384 cites W1983538626 @default.
- W2742733384 cites W1987191606 @default.
- W2742733384 cites W1987524149 @default.
- W2742733384 cites W1993553743 @default.
- W2742733384 cites W2008113881 @default.
- W2742733384 cites W2008750741 @default.
- W2742733384 cites W2010226892 @default.
- W2742733384 cites W2022638219 @default.
- W2742733384 cites W2026799833 @default.
- W2742733384 cites W2031485064 @default.
- W2742733384 cites W2032746081 @default.
- W2742733384 cites W2035891073 @default.
- W2742733384 cites W2038817503 @default.
- W2742733384 cites W2039643762 @default.
- W2742733384 cites W2040085089 @default.
- W2742733384 cites W2045675542 @default.
- W2742733384 cites W2049144909 @default.
- W2742733384 cites W2050386030 @default.
- W2742733384 cites W2052533555 @default.
- W2742733384 cites W2055366463 @default.
- W2742733384 cites W2057044582 @default.
- W2742733384 cites W2059223251 @default.
- W2742733384 cites W2059815434 @default.
- W2742733384 cites W2060012482 @default.
- W2742733384 cites W2068375361 @default.
- W2742733384 cites W2078876426 @default.
- W2742733384 cites W2084549990 @default.
- W2742733384 cites W2084558852 @default.
- W2742733384 cites W2103578795 @default.
- W2742733384 cites W2103747203 @default.
- W2742733384 cites W2110410606 @default.
- W2742733384 cites W2121675877 @default.
- W2742733384 cites W2123365131 @default.
- W2742733384 cites W2123856841 @default.
- W2742733384 cites W2125295733 @default.
- W2742733384 cites W2132029227 @default.
- W2742733384 cites W2137628107 @default.
- W2742733384 cites W2141847256 @default.
- W2742733384 cites W2142827876 @default.
- W2742733384 cites W2148980777 @default.
- W2742733384 cites W2152248559 @default.
- W2742733384 cites W2153995609 @default.
- W2742733384 cites W2155353497 @default.
- W2742733384 cites W2159308287 @default.
- W2742733384 cites W2163041825 @default.
- W2742733384 cites W2165260970 @default.
- W2742733384 cites W2168369714 @default.
- W2742733384 cites W2195352021 @default.
- W2742733384 cites W2294672007 @default.
- W2742733384 cites W2312205405 @default.
- W2742733384 cites W2320595824 @default.
- W2742733384 cites W2325353393 @default.
- W2742733384 cites W2331920500 @default.
- W2742733384 cites W2572173819 @default.
- W2742733384 cites W2607720425 @default.
- W2742733384 cites W354387912 @default.
- W2742733384 cites W4211138784 @default.
- W2742733384 cites W4232976974 @default.
- W2742733384 doi "https://doi.org/10.1016/j.hal.2017.08.003" @default.
- W2742733384 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28962974" @default.
- W2742733384 hasPublicationYear "2017" @default.
- W2742733384 type Work @default.
- W2742733384 sameAs 2742733384 @default.
- W2742733384 citedByCount "17" @default.
- W2742733384 countsByYear W27427333842019 @default.
- W2742733384 countsByYear W27427333842020 @default.
- W2742733384 countsByYear W27427333842021 @default.
- W2742733384 countsByYear W27427333842022 @default.
- W2742733384 countsByYear W27427333842023 @default.
- W2742733384 crossrefType "journal-article" @default.
- W2742733384 hasAuthorship W2742733384A5033020983 @default.
- W2742733384 hasAuthorship W2742733384A5033213328 @default.
- W2742733384 hasAuthorship W2742733384A5062474380 @default.
- W2742733384 hasAuthorship W2742733384A5074628545 @default.
- W2742733384 hasConcept C121332964 @default.
- W2742733384 hasConcept C1276947 @default.
- W2742733384 hasConcept C132651083 @default.
- W2742733384 hasConcept C142796444 @default.
- W2742733384 hasConcept C170853661 @default.
- W2742733384 hasConcept C18903297 @default.