Matches in SemOpenAlex for { <https://semopenalex.org/work/W2742763625> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2742763625 abstract "In general, the parameter estimation of GWOLR model uses maximum likelihood method, but it constructs a system of nonlinear equations, making it difficult to find the solution. Therefore, an approximate solution is needed. There are two popular numerical methods: the methods of Newton and Quasi-Newton (QN). Newton’s method requires large-scale time in executing the computation program since it contains Jacobian matrix (derivative). QN method overcomes the drawback of Newton’s method by substituting derivative computation into a function of direct computation. The QN method uses Hessian matrix approach which contains Davidon-Fletcher-Powell (DFP) formula. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is categorized as the QN method which has the DFP formula attribute of having positive definite Hessian matrix. The BFGS method requires large memory in executing the program so another algorithm to decrease memory usage is needed, namely Low Memory BFGS (LBFGS). The purpose of this research is to compute the efficiency of the LBFGS method in the iterative and recursive computation of Hessian matrix and its inverse for the GWOLR parameter estimation. In reference to the research findings, we found out that the BFGS and LBFGS methods have arithmetic operation schemes, including O(n2) and O(nm)." @default.
- W2742763625 created "2017-08-17" @default.
- W2742763625 creator A5000847023 @default.
- W2742763625 creator A5051857035 @default.
- W2742763625 date "2017-01-01" @default.
- W2742763625 modified "2023-10-06" @default.
- W2742763625 title "Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method for the parameter estimation on geographically weighted ordinal logistic regression model (GWOLR)" @default.
- W2742763625 cites W1976890616 @default.
- W2742763625 cites W2003809942 @default.
- W2742763625 cites W2062294426 @default.
- W2742763625 cites W2076983043 @default.
- W2742763625 cites W2092087339 @default.
- W2742763625 cites W2102667697 @default.
- W2742763625 cites W2110836275 @default.
- W2742763625 cites W239075197 @default.
- W2742763625 cites W4210310779 @default.
- W2742763625 cites W4252948584 @default.
- W2742763625 cites W4298227433 @default.
- W2742763625 cites W4299689471 @default.
- W2742763625 cites W63600712 @default.
- W2742763625 doi "https://doi.org/10.1063/1.4995124" @default.
- W2742763625 hasPublicationYear "2017" @default.
- W2742763625 type Work @default.
- W2742763625 sameAs 2742763625 @default.
- W2742763625 citedByCount "42" @default.
- W2742763625 countsByYear W27427636252019 @default.
- W2742763625 countsByYear W27427636252020 @default.
- W2742763625 countsByYear W27427636252021 @default.
- W2742763625 countsByYear W27427636252022 @default.
- W2742763625 countsByYear W27427636252023 @default.
- W2742763625 crossrefType "proceedings-article" @default.
- W2742763625 hasAuthorship W2742763625A5000847023 @default.
- W2742763625 hasAuthorship W2742763625A5051857035 @default.
- W2742763625 hasBestOaLocation W27427636251 @default.
- W2742763625 hasConcept C106487976 @default.
- W2742763625 hasConcept C11413529 @default.
- W2742763625 hasConcept C114954040 @default.
- W2742763625 hasConcept C121332964 @default.
- W2742763625 hasConcept C126255220 @default.
- W2742763625 hasConcept C132721684 @default.
- W2742763625 hasConcept C151319957 @default.
- W2742763625 hasConcept C158622935 @default.
- W2742763625 hasConcept C159985019 @default.
- W2742763625 hasConcept C192562407 @default.
- W2742763625 hasConcept C200331156 @default.
- W2742763625 hasConcept C203616005 @default.
- W2742763625 hasConcept C28826006 @default.
- W2742763625 hasConcept C31258907 @default.
- W2742763625 hasConcept C33923547 @default.
- W2742763625 hasConcept C41008148 @default.
- W2742763625 hasConcept C45374587 @default.
- W2742763625 hasConcept C62520636 @default.
- W2742763625 hasConcept C85189116 @default.
- W2742763625 hasConceptScore W2742763625C106487976 @default.
- W2742763625 hasConceptScore W2742763625C11413529 @default.
- W2742763625 hasConceptScore W2742763625C114954040 @default.
- W2742763625 hasConceptScore W2742763625C121332964 @default.
- W2742763625 hasConceptScore W2742763625C126255220 @default.
- W2742763625 hasConceptScore W2742763625C132721684 @default.
- W2742763625 hasConceptScore W2742763625C151319957 @default.
- W2742763625 hasConceptScore W2742763625C158622935 @default.
- W2742763625 hasConceptScore W2742763625C159985019 @default.
- W2742763625 hasConceptScore W2742763625C192562407 @default.
- W2742763625 hasConceptScore W2742763625C200331156 @default.
- W2742763625 hasConceptScore W2742763625C203616005 @default.
- W2742763625 hasConceptScore W2742763625C28826006 @default.
- W2742763625 hasConceptScore W2742763625C31258907 @default.
- W2742763625 hasConceptScore W2742763625C33923547 @default.
- W2742763625 hasConceptScore W2742763625C41008148 @default.
- W2742763625 hasConceptScore W2742763625C45374587 @default.
- W2742763625 hasConceptScore W2742763625C62520636 @default.
- W2742763625 hasConceptScore W2742763625C85189116 @default.
- W2742763625 hasLocation W27427636251 @default.
- W2742763625 hasOpenAccess W2742763625 @default.
- W2742763625 hasPrimaryLocation W27427636251 @default.
- W2742763625 hasRelatedWork W2025554373 @default.
- W2742763625 hasRelatedWork W2060767695 @default.
- W2742763625 hasRelatedWork W2070932288 @default.
- W2742763625 hasRelatedWork W2382662999 @default.
- W2742763625 hasRelatedWork W2489086843 @default.
- W2742763625 hasRelatedWork W2572889128 @default.
- W2742763625 hasRelatedWork W2937637171 @default.
- W2742763625 hasRelatedWork W3210693517 @default.
- W2742763625 hasRelatedWork W4283726990 @default.
- W2742763625 hasRelatedWork W4318192194 @default.
- W2742763625 isParatext "false" @default.
- W2742763625 isRetracted "false" @default.
- W2742763625 magId "2742763625" @default.
- W2742763625 workType "article" @default.