Matches in SemOpenAlex for { <https://semopenalex.org/work/W2743003917> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2743003917 abstract "For many real-life web applications, web surfers would like to get recommendation on which collections of web pages that would be interested to them or that they should follow. In order to discover this information and make recommendation, data mining---and specially, association rule mining or web mining---is in demand. Since its introduction, association rule mining has drawn attention of many researchers. Consequently, many association rule mining algorithms have been proposed for finding interesting relationships---in the form of association rules---among frequently occurring patterns. These algorithms include level-wise Apriori-based algorithms, tree-based algorithms, hyperlinked array structure based algorithms, and vertical mining algorithms. While these algorithms are popular, they suffer from some drawbacks. Moreover, as we are living in the era of big data, high volumes of a wide variety of valuable data of different veracity collected at a high velocity post another challenges to data science and big data analytics. To deal with these big data while avoiding the drawbacks of existing algorithms, we present a bitwise parallel association rule mining system for web mining and recommendation in this paper. Evaluation results show the effectiveness and practicality of our parallel algorithm---which discovers popular pages on the web, which in turn gives the web surfers recommendation of web pages that might be interested to them---in real-life web applications." @default.
- W2743003917 created "2017-08-17" @default.
- W2743003917 creator A5006729336 @default.
- W2743003917 creator A5016113718 @default.
- W2743003917 creator A5043474067 @default.
- W2743003917 date "2017-08-23" @default.
- W2743003917 modified "2023-09-25" @default.
- W2743003917 title "Bitwise parallel association rule mining for web page recommendation" @default.
- W2743003917 cites W1968355443 @default.
- W2743003917 cites W2004748427 @default.
- W2743003917 cites W2036147130 @default.
- W2743003917 cites W2093456341 @default.
- W2743003917 cites W2099404336 @default.
- W2743003917 cites W2162342083 @default.
- W2743003917 cites W2276557110 @default.
- W2743003917 cites W2285011720 @default.
- W2743003917 cites W2287495532 @default.
- W2743003917 cites W2545356923 @default.
- W2743003917 cites W2575255383 @default.
- W2743003917 cites W2676841717 @default.
- W2743003917 cites W2746015747 @default.
- W2743003917 cites W4249787843 @default.
- W2743003917 cites W4252403066 @default.
- W2743003917 doi "https://doi.org/10.1145/3106426.3106542" @default.
- W2743003917 hasPublicationYear "2017" @default.
- W2743003917 type Work @default.
- W2743003917 sameAs 2743003917 @default.
- W2743003917 citedByCount "12" @default.
- W2743003917 countsByYear W27430039172017 @default.
- W2743003917 countsByYear W27430039172018 @default.
- W2743003917 countsByYear W27430039172019 @default.
- W2743003917 countsByYear W27430039172020 @default.
- W2743003917 countsByYear W27430039172022 @default.
- W2743003917 crossrefType "proceedings-article" @default.
- W2743003917 hasAuthorship W2743003917A5006729336 @default.
- W2743003917 hasAuthorship W2743003917A5016113718 @default.
- W2743003917 hasAuthorship W2743003917A5043474067 @default.
- W2743003917 hasConcept C124101348 @default.
- W2743003917 hasConcept C130436687 @default.
- W2743003917 hasConcept C136764020 @default.
- W2743003917 hasConcept C193524817 @default.
- W2743003917 hasConcept C197046077 @default.
- W2743003917 hasConcept C21959979 @default.
- W2743003917 hasConcept C23123220 @default.
- W2743003917 hasConcept C2522767166 @default.
- W2743003917 hasConcept C41008148 @default.
- W2743003917 hasConcept C516187249 @default.
- W2743003917 hasConcept C544335954 @default.
- W2743003917 hasConcept C75684735 @default.
- W2743003917 hasConcept C81440476 @default.
- W2743003917 hasConceptScore W2743003917C124101348 @default.
- W2743003917 hasConceptScore W2743003917C130436687 @default.
- W2743003917 hasConceptScore W2743003917C136764020 @default.
- W2743003917 hasConceptScore W2743003917C193524817 @default.
- W2743003917 hasConceptScore W2743003917C197046077 @default.
- W2743003917 hasConceptScore W2743003917C21959979 @default.
- W2743003917 hasConceptScore W2743003917C23123220 @default.
- W2743003917 hasConceptScore W2743003917C2522767166 @default.
- W2743003917 hasConceptScore W2743003917C41008148 @default.
- W2743003917 hasConceptScore W2743003917C516187249 @default.
- W2743003917 hasConceptScore W2743003917C544335954 @default.
- W2743003917 hasConceptScore W2743003917C75684735 @default.
- W2743003917 hasConceptScore W2743003917C81440476 @default.
- W2743003917 hasFunder F4320334593 @default.
- W2743003917 hasLocation W27430039171 @default.
- W2743003917 hasOpenAccess W2743003917 @default.
- W2743003917 hasPrimaryLocation W27430039171 @default.
- W2743003917 hasRelatedWork W1906800012 @default.
- W2743003917 hasRelatedWork W2092024588 @default.
- W2743003917 hasRelatedWork W2228666118 @default.
- W2743003917 hasRelatedWork W2240248956 @default.
- W2743003917 hasRelatedWork W2337551745 @default.
- W2743003917 hasRelatedWork W2622968908 @default.
- W2743003917 hasRelatedWork W2945931694 @default.
- W2743003917 hasRelatedWork W3174726539 @default.
- W2743003917 hasRelatedWork W56874564 @default.
- W2743003917 hasRelatedWork W2182629206 @default.
- W2743003917 isParatext "false" @default.
- W2743003917 isRetracted "false" @default.
- W2743003917 magId "2743003917" @default.
- W2743003917 workType "article" @default.