Matches in SemOpenAlex for { <https://semopenalex.org/work/W2743107741> ?p ?o ?g. }
- W2743107741 endingPage "118" @default.
- W2743107741 startingPage "102" @default.
- W2743107741 abstract "Computer vision technologies are at the core of different advanced driver assistance systems (ADAS) and will play a key role in oncoming autonomous vehicles too. One of the main challenges for such technologies is to perceive the driving environment, i.e. to detect and track relevant driving information in a reliable manner (e.g. pedestrians in the vehicle route, free space to drive through). Nowadays it is clear that machine learning techniques are essential for developing such a visual perception for driving. In particular, the standard working pipeline consists of collecting data (i.e. on-board images), manually annotating the data (e.g. drawing bounding boxes around pedestrians), learning a discriminative data representation taking advantage of such annotations (e.g. a deformable part-based model, a deep convolutional neural network), and then assessing the reliability of such representation with the acquired data. In the last two decades most of the research efforts focused on representation learning (first, designing descriptors and learning classifiers; later doing it end-to-end). Hence, collecting data and, especially, annotating it, is essential for learning good representations. While this has been the case from the very beginning, only after the disruptive appearance of deep convolutional neural networks that it became a serious issue due to their data hungry nature. In this context, the problem is that manual data annotation is a tiresome work prone to errors. Accordingly, in the late 00’s we initiated a research line consisting of training visual models using photo-realistic computer graphics, especially focusing on assisted and autonomous driving. In this paper, we summarize such a work and show how it has become a new tendency with increasing acceptance." @default.
- W2743107741 created "2017-08-17" @default.
- W2743107741 creator A5004903288 @default.
- W2743107741 creator A5015191383 @default.
- W2743107741 creator A5019380710 @default.
- W2743107741 creator A5049984637 @default.
- W2743107741 creator A5051002909 @default.
- W2743107741 creator A5055898646 @default.
- W2743107741 creator A5074375535 @default.
- W2743107741 creator A5087248790 @default.
- W2743107741 date "2017-12-01" @default.
- W2743107741 modified "2023-10-16" @default.
- W2743107741 title "Training my car to see using virtual worlds" @default.
- W2743107741 cites W1975533357 @default.
- W2743107741 cites W1979596264 @default.
- W2743107741 cites W1981636936 @default.
- W2743107741 cites W1984219651 @default.
- W2743107741 cites W2014852133 @default.
- W2743107741 cites W2031454541 @default.
- W2743107741 cites W2031489346 @default.
- W2743107741 cites W2033547469 @default.
- W2743107741 cites W2036490799 @default.
- W2743107741 cites W2039544046 @default.
- W2743107741 cites W2041280778 @default.
- W2743107741 cites W2067713319 @default.
- W2743107741 cites W2079624250 @default.
- W2743107741 cites W2079854881 @default.
- W2743107741 cites W2094198769 @default.
- W2743107741 cites W2102157586 @default.
- W2743107741 cites W2110764733 @default.
- W2743107741 cites W2115579991 @default.
- W2743107741 cites W2121955477 @default.
- W2743107741 cites W2123533187 @default.
- W2743107741 cites W2126282133 @default.
- W2743107741 cites W2129091674 @default.
- W2743107741 cites W2131382202 @default.
- W2743107741 cites W2138273245 @default.
- W2743107741 cites W2139479830 @default.
- W2743107741 cites W2139921015 @default.
- W2743107741 cites W2143635852 @default.
- W2743107741 cites W2158688659 @default.
- W2743107741 cites W2159132531 @default.
- W2743107741 cites W2159570078 @default.
- W2743107741 cites W2168356304 @default.
- W2743107741 cites W2170377024 @default.
- W2743107741 cites W2171943915 @default.
- W2743107741 cites W4230030242 @default.
- W2743107741 cites W2056732426 @default.
- W2743107741 doi "https://doi.org/10.1016/j.imavis.2017.07.007" @default.
- W2743107741 hasPublicationYear "2017" @default.
- W2743107741 type Work @default.
- W2743107741 sameAs 2743107741 @default.
- W2743107741 citedByCount "10" @default.
- W2743107741 countsByYear W27431077412019 @default.
- W2743107741 countsByYear W27431077412020 @default.
- W2743107741 countsByYear W27431077412021 @default.
- W2743107741 crossrefType "journal-article" @default.
- W2743107741 hasAuthorship W2743107741A5004903288 @default.
- W2743107741 hasAuthorship W2743107741A5015191383 @default.
- W2743107741 hasAuthorship W2743107741A5019380710 @default.
- W2743107741 hasAuthorship W2743107741A5049984637 @default.
- W2743107741 hasAuthorship W2743107741A5051002909 @default.
- W2743107741 hasAuthorship W2743107741A5055898646 @default.
- W2743107741 hasAuthorship W2743107741A5074375535 @default.
- W2743107741 hasAuthorship W2743107741A5087248790 @default.
- W2743107741 hasConcept C107457646 @default.
- W2743107741 hasConcept C108583219 @default.
- W2743107741 hasConcept C119857082 @default.
- W2743107741 hasConcept C151730666 @default.
- W2743107741 hasConcept C154945302 @default.
- W2743107741 hasConcept C17744445 @default.
- W2743107741 hasConcept C199360897 @default.
- W2743107741 hasConcept C199539241 @default.
- W2743107741 hasConcept C2776359362 @default.
- W2743107741 hasConcept C2779343474 @default.
- W2743107741 hasConcept C41008148 @default.
- W2743107741 hasConcept C43521106 @default.
- W2743107741 hasConcept C63584917 @default.
- W2743107741 hasConcept C81363708 @default.
- W2743107741 hasConcept C86803240 @default.
- W2743107741 hasConcept C94625758 @default.
- W2743107741 hasConcept C97931131 @default.
- W2743107741 hasConceptScore W2743107741C107457646 @default.
- W2743107741 hasConceptScore W2743107741C108583219 @default.
- W2743107741 hasConceptScore W2743107741C119857082 @default.
- W2743107741 hasConceptScore W2743107741C151730666 @default.
- W2743107741 hasConceptScore W2743107741C154945302 @default.
- W2743107741 hasConceptScore W2743107741C17744445 @default.
- W2743107741 hasConceptScore W2743107741C199360897 @default.
- W2743107741 hasConceptScore W2743107741C199539241 @default.
- W2743107741 hasConceptScore W2743107741C2776359362 @default.
- W2743107741 hasConceptScore W2743107741C2779343474 @default.
- W2743107741 hasConceptScore W2743107741C41008148 @default.
- W2743107741 hasConceptScore W2743107741C43521106 @default.
- W2743107741 hasConceptScore W2743107741C63584917 @default.
- W2743107741 hasConceptScore W2743107741C81363708 @default.
- W2743107741 hasConceptScore W2743107741C86803240 @default.
- W2743107741 hasConceptScore W2743107741C94625758 @default.