Matches in SemOpenAlex for { <https://semopenalex.org/work/W2743110609> ?p ?o ?g. }
- W2743110609 endingPage "130" @default.
- W2743110609 startingPage "123" @default.
- W2743110609 abstract "Objective Machine learning (ML) algorithms are powerful tools for predicting patient outcomes. This study pilots a novel approach to algorithm selection and model creation using prediction of discharge disposition following meningioma resection as a proof of concept. Materials and Methods A diversity of ML algorithms were trained on a single-institution database of meningioma patients to predict discharge disposition. Algorithms were ranked by predictive power and top performers were combined to create an ensemble model. The final ensemble was internally validated on never-before-seen data to demonstrate generalizability. The predictive power of the ensemble was compared with a logistic regression. Further analyses were performed to identify how important variables impact the ensemble. Results Our ensemble model predicted disposition significantly better than a logistic regression (area under the curve of 0.78 and 0.71, respectively, p = 0.01). Tumor size, presentation at the emergency department, body mass index, convexity location, and preoperative motor deficit most strongly influence the model, though the independent impact of individual variables is nuanced. Conclusion Using a novel ML technique, we built a guided ML ensemble model that predicts discharge destination following meningioma resection with greater predictive power than a logistic regression, and that provides greater clinical insight than a univariate analysis. These techniques can be extended to predict many other patient outcomes of interest." @default.
- W2743110609 created "2017-08-17" @default.
- W2743110609 creator A5002835192 @default.
- W2743110609 creator A5009417430 @default.
- W2743110609 creator A5044072248 @default.
- W2743110609 creator A5044868372 @default.
- W2743110609 creator A5053171472 @default.
- W2743110609 creator A5075018868 @default.
- W2743110609 creator A5078181843 @default.
- W2743110609 date "2017-08-08" @default.
- W2743110609 modified "2023-10-16" @default.
- W2743110609 title "Using a Guided Machine Learning Ensemble Model to Predict Discharge Disposition following Meningioma Resection" @default.
- W2743110609 cites W1505191356 @default.
- W2743110609 cites W2007601283 @default.
- W2743110609 cites W2009835186 @default.
- W2743110609 cites W2010842168 @default.
- W2743110609 cites W2016014191 @default.
- W2743110609 cites W2020471456 @default.
- W2743110609 cites W2037668591 @default.
- W2743110609 cites W2059967673 @default.
- W2743110609 cites W2060867475 @default.
- W2743110609 cites W2104441823 @default.
- W2743110609 cites W2105924780 @default.
- W2743110609 cites W2111547563 @default.
- W2743110609 cites W2114297365 @default.
- W2743110609 cites W2129003580 @default.
- W2743110609 cites W2161673710 @default.
- W2743110609 cites W2171241607 @default.
- W2743110609 cites W2171860505 @default.
- W2743110609 cites W2177870565 @default.
- W2743110609 cites W2200122354 @default.
- W2743110609 cites W2254050631 @default.
- W2743110609 cites W2326059109 @default.
- W2743110609 cites W2332285323 @default.
- W2743110609 cites W2402601207 @default.
- W2743110609 cites W2496177076 @default.
- W2743110609 cites W2509317458 @default.
- W2743110609 cites W2525984666 @default.
- W2743110609 doi "https://doi.org/10.1055/s-0037-1604393" @default.
- W2743110609 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5978858" @default.
- W2743110609 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29868316" @default.
- W2743110609 hasPublicationYear "2017" @default.
- W2743110609 type Work @default.
- W2743110609 sameAs 2743110609 @default.
- W2743110609 citedByCount "28" @default.
- W2743110609 countsByYear W27431106092018 @default.
- W2743110609 countsByYear W27431106092019 @default.
- W2743110609 countsByYear W27431106092020 @default.
- W2743110609 countsByYear W27431106092021 @default.
- W2743110609 countsByYear W27431106092022 @default.
- W2743110609 countsByYear W27431106092023 @default.
- W2743110609 crossrefType "journal-article" @default.
- W2743110609 hasAuthorship W2743110609A5002835192 @default.
- W2743110609 hasAuthorship W2743110609A5009417430 @default.
- W2743110609 hasAuthorship W2743110609A5044072248 @default.
- W2743110609 hasAuthorship W2743110609A5044868372 @default.
- W2743110609 hasAuthorship W2743110609A5053171472 @default.
- W2743110609 hasAuthorship W2743110609A5075018868 @default.
- W2743110609 hasAuthorship W2743110609A5078181843 @default.
- W2743110609 hasBestOaLocation W27431106092 @default.
- W2743110609 hasConcept C105795698 @default.
- W2743110609 hasConcept C111472728 @default.
- W2743110609 hasConcept C119857082 @default.
- W2743110609 hasConcept C119898033 @default.
- W2743110609 hasConcept C138885662 @default.
- W2743110609 hasConcept C141071460 @default.
- W2743110609 hasConcept C151956035 @default.
- W2743110609 hasConcept C154945302 @default.
- W2743110609 hasConcept C161584116 @default.
- W2743110609 hasConcept C199163554 @default.
- W2743110609 hasConcept C27158222 @default.
- W2743110609 hasConcept C2778136018 @default.
- W2743110609 hasConcept C2779160599 @default.
- W2743110609 hasConcept C33923547 @default.
- W2743110609 hasConcept C41008148 @default.
- W2743110609 hasConcept C45942800 @default.
- W2743110609 hasConcept C71924100 @default.
- W2743110609 hasConceptScore W2743110609C105795698 @default.
- W2743110609 hasConceptScore W2743110609C111472728 @default.
- W2743110609 hasConceptScore W2743110609C119857082 @default.
- W2743110609 hasConceptScore W2743110609C119898033 @default.
- W2743110609 hasConceptScore W2743110609C138885662 @default.
- W2743110609 hasConceptScore W2743110609C141071460 @default.
- W2743110609 hasConceptScore W2743110609C151956035 @default.
- W2743110609 hasConceptScore W2743110609C154945302 @default.
- W2743110609 hasConceptScore W2743110609C161584116 @default.
- W2743110609 hasConceptScore W2743110609C199163554 @default.
- W2743110609 hasConceptScore W2743110609C27158222 @default.
- W2743110609 hasConceptScore W2743110609C2778136018 @default.
- W2743110609 hasConceptScore W2743110609C2779160599 @default.
- W2743110609 hasConceptScore W2743110609C33923547 @default.
- W2743110609 hasConceptScore W2743110609C41008148 @default.
- W2743110609 hasConceptScore W2743110609C45942800 @default.
- W2743110609 hasConceptScore W2743110609C71924100 @default.
- W2743110609 hasIssue "02" @default.
- W2743110609 hasLocation W27431106091 @default.
- W2743110609 hasLocation W27431106092 @default.
- W2743110609 hasLocation W27431106093 @default.