Matches in SemOpenAlex for { <https://semopenalex.org/work/W2743123564> ?p ?o ?g. }
- W2743123564 endingPage "3864" @default.
- W2743123564 startingPage "3839" @default.
- W2743123564 abstract "This study analyzes simulated regional-scale ozone burdens both near the surface and aloft, estimates process contributions to these burdens, and calculates the sensitivity of the simulated regional-scale ozone burden to several key model inputs with a particular emphasis on boundary conditions derived from hemispheric or global-scale models. The Community Multiscale Air Quality (CMAQ) model simulations supporting this analysis were performed over the continental US for the year 2010 within the context of the Air Quality Model Evaluation International Initiative (AQMEII) and Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) activities. CMAQ process analysis (PA) results highlight the dominant role of horizontal and vertical advection on the ozone burden in the mid-to-upper troposphere and lower stratosphere. Vertical mixing, including mixing by convective clouds, couples fluctuations in free-tropospheric ozone to ozone in lower layers. Hypothetical bounding scenarios were performed to quantify the effects of emissions, boundary conditions, and ozone dry deposition on the simulated ozone burden. Analysis of these simulations confirms that the characterization of ozone outside the regional-scale modeling domain can have a profound impact on simulated regional-scale ozone. This was further investigated by using data from four hemispheric or global modeling systems (Chemistry - Integrated Forecasting Model (C-IFS), CMAQ extended for hemispheric applications (H-CMAQ), the Goddard Earth Observing System model coupled to chemistry (GEOS-Chem), and AM3) to derive alternate boundary conditions for the regional-scale CMAQ simulations. The regional-scale CMAQ simulations using these four different boundary conditions showed that the largest ozone abundance in the upper layers was simulated when using boundary conditions from GEOS-Chem, followed by the simulations using C-IFS, AM3, and H-CMAQ boundary conditions, consistent with the analysis of the ozone fields from the global models along the CMAQ boundaries. Using boundary conditions from AM3 yielded higher springtime ozone columns burdens in the middle and lower troposphere compared to boundary conditions from the other models. For surface ozone, the differences between the AM3-driven CMAQ simulations and the CMAQ simulations driven by other large-scale models are especially pronounced during spring and winter where they can reach more than 10 ppb for seasonal mean ozone mixing ratios and as much as 15 ppb for domain-averaged daily maximum 8 h average ozone on individual days. In contrast, the differences between the C-IFS-, GEOS-Chem-, and H-CMAQ-driven regional-scale CMAQ simulations are typically smaller. Comparing simulated sur face ozone mixing ratios to observations and computing seasonal and regional model performance statistics revealed that boundary conditions can have a substantial impact on model performance. Further analysis showed that boundary conditions can affect model performance across the entire range of the observed distribution, although the impacts tend to be lower during summer and for the very highest observed percentiles. The results are discussed in the context of future model development and analysis opportunities." @default.
- W2743123564 created "2017-08-17" @default.
- W2743123564 creator A5001078849 @default.
- W2743123564 creator A5009541468 @default.
- W2743123564 creator A5018814025 @default.
- W2743123564 creator A5020712773 @default.
- W2743123564 creator A5027270746 @default.
- W2743123564 creator A5046880051 @default.
- W2743123564 creator A5062518836 @default.
- W2743123564 creator A5067625332 @default.
- W2743123564 date "2018-03-16" @default.
- W2743123564 modified "2023-10-17" @default.
- W2743123564 title "Impacts of different characterizations of large-scale background on simulated regional-scale ozone over the continental United States" @default.
- W2743123564 cites W1802266752 @default.
- W2743123564 cites W1833367443 @default.
- W2743123564 cites W1855313174 @default.
- W2743123564 cites W1862105058 @default.
- W2743123564 cites W1971485533 @default.
- W2743123564 cites W1978316624 @default.
- W2743123564 cites W1978635716 @default.
- W2743123564 cites W1980254188 @default.
- W2743123564 cites W2002570697 @default.
- W2743123564 cites W2003432975 @default.
- W2743123564 cites W2008641894 @default.
- W2743123564 cites W2017079553 @default.
- W2743123564 cites W2018760167 @default.
- W2743123564 cites W2021350270 @default.
- W2743123564 cites W2029236317 @default.
- W2743123564 cites W2032444819 @default.
- W2743123564 cites W2034032998 @default.
- W2743123564 cites W2042881270 @default.
- W2743123564 cites W2043196564 @default.
- W2743123564 cites W2049826615 @default.
- W2743123564 cites W2051008536 @default.
- W2743123564 cites W2053571148 @default.
- W2743123564 cites W2055392263 @default.
- W2743123564 cites W2055703682 @default.
- W2743123564 cites W2056090883 @default.
- W2743123564 cites W2057288668 @default.
- W2743123564 cites W2067209936 @default.
- W2743123564 cites W2073028483 @default.
- W2743123564 cites W2076310731 @default.
- W2743123564 cites W2076339257 @default.
- W2743123564 cites W2076690115 @default.
- W2743123564 cites W2079054909 @default.
- W2743123564 cites W2086488147 @default.
- W2743123564 cites W2089054335 @default.
- W2743123564 cites W2095427266 @default.
- W2743123564 cites W2098531686 @default.
- W2743123564 cites W2100982438 @default.
- W2743123564 cites W2117213541 @default.
- W2743123564 cites W2119834746 @default.
- W2743123564 cites W2121459212 @default.
- W2743123564 cites W2124443761 @default.
- W2743123564 cites W2128738304 @default.
- W2743123564 cites W2138017294 @default.
- W2743123564 cites W2148311883 @default.
- W2743123564 cites W2150943275 @default.
- W2743123564 cites W2151181273 @default.
- W2743123564 cites W2152811544 @default.
- W2743123564 cites W2154834147 @default.
- W2743123564 cites W2155039075 @default.
- W2743123564 cites W2162953324 @default.
- W2743123564 cites W2166192216 @default.
- W2743123564 cites W2169867552 @default.
- W2743123564 cites W2171688174 @default.
- W2743123564 cites W2278057974 @default.
- W2743123564 cites W2507792507 @default.
- W2743123564 cites W2511997790 @default.
- W2743123564 cites W2529533245 @default.
- W2743123564 cites W2546736492 @default.
- W2743123564 cites W2558974641 @default.
- W2743123564 cites W2560292447 @default.
- W2743123564 cites W2566332937 @default.
- W2743123564 cites W2584923509 @default.
- W2743123564 cites W2603605861 @default.
- W2743123564 cites W2606357855 @default.
- W2743123564 cites W2607401378 @default.
- W2743123564 cites W2610650693 @default.
- W2743123564 cites W2902038103 @default.
- W2743123564 doi "https://doi.org/10.5194/acp-18-3839-2018" @default.
- W2743123564 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6071430" @default.
- W2743123564 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30079085" @default.
- W2743123564 hasPublicationYear "2018" @default.
- W2743123564 type Work @default.
- W2743123564 sameAs 2743123564 @default.
- W2743123564 citedByCount "40" @default.
- W2743123564 countsByYear W27431235642018 @default.
- W2743123564 countsByYear W27431235642019 @default.
- W2743123564 countsByYear W27431235642020 @default.
- W2743123564 countsByYear W27431235642021 @default.
- W2743123564 countsByYear W27431235642022 @default.
- W2743123564 countsByYear W27431235642023 @default.
- W2743123564 crossrefType "journal-article" @default.
- W2743123564 hasAuthorship W2743123564A5001078849 @default.
- W2743123564 hasAuthorship W2743123564A5009541468 @default.
- W2743123564 hasAuthorship W2743123564A5018814025 @default.
- W2743123564 hasAuthorship W2743123564A5020712773 @default.