Matches in SemOpenAlex for { <https://semopenalex.org/work/W2743129437> ?p ?o ?g. }
- W2743129437 endingPage "414" @default.
- W2743129437 startingPage "405" @default.
- W2743129437 abstract "In this paper, we propose a novel sparse regression method for Brain-Wide and Genome-Wide association study. Specifically, we impose a low-rank constraint on the weight coefficient matrix and then decompose it into two low-rank matrices, which find relationships in genetic features and in brain imaging features, respectively. We also introduce a sparse acyclic digraph with sparsity-inducing penalty to take further into account the correlations among the genetic variables, by which it can be possible to identify the representative SNPs that are highly associated with the brain imaging features. We optimize our objective function by jointly tackling low-rank regression and variable selection in a framework. In our method, the low-rank constraint allows us to conduct variable selection with the low-rank representations of the data; the learned low-sparsity weight coefficients allow discarding unimportant variables at the end. The experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset showed that the proposed method could select the important SNPs to more accurately estimate the brain imaging features than the state-of-the-art methods." @default.
- W2743129437 created "2017-08-17" @default.
- W2743129437 creator A5000937401 @default.
- W2743129437 creator A5033720496 @default.
- W2743129437 creator A5037340898 @default.
- W2743129437 creator A5060016795 @default.
- W2743129437 date "2017-12-01" @default.
- W2743129437 modified "2023-10-15" @default.
- W2743129437 title "Low-Rank Graph-Regularized Structured Sparse Regression for Identifying Genetic Biomarkers" @default.
- W2743129437 cites W108615132 @default.
- W2743129437 cites W1484191591 @default.
- W2743129437 cites W1501531539 @default.
- W2743129437 cites W1589553443 @default.
- W2743129437 cites W1770306640 @default.
- W2743129437 cites W1840245322 @default.
- W2743129437 cites W1971356345 @default.
- W2743129437 cites W1976364950 @default.
- W2743129437 cites W1986046759 @default.
- W2743129437 cites W1992461476 @default.
- W2743129437 cites W1993962865 @default.
- W2743129437 cites W1998710995 @default.
- W2743129437 cites W1999893542 @default.
- W2743129437 cites W2002370809 @default.
- W2743129437 cites W2005072638 @default.
- W2743129437 cites W2008989859 @default.
- W2743129437 cites W2017079501 @default.
- W2743129437 cites W2017237939 @default.
- W2743129437 cites W2017456650 @default.
- W2743129437 cites W2038147585 @default.
- W2743129437 cites W2039363263 @default.
- W2743129437 cites W2046391671 @default.
- W2743129437 cites W2046847841 @default.
- W2743129437 cites W2048234200 @default.
- W2743129437 cites W2049429524 @default.
- W2743129437 cites W2050767557 @default.
- W2743129437 cites W2053835831 @default.
- W2743129437 cites W2054121219 @default.
- W2743129437 cites W2069552222 @default.
- W2743129437 cites W2073301055 @default.
- W2743129437 cites W2109845730 @default.
- W2743129437 cites W2110496823 @default.
- W2743129437 cites W2122066039 @default.
- W2743129437 cites W2131242591 @default.
- W2743129437 cites W2134946498 @default.
- W2743129437 cites W2136573752 @default.
- W2743129437 cites W2141366416 @default.
- W2743129437 cites W2146089088 @default.
- W2743129437 cites W2152119060 @default.
- W2743129437 cites W2154865814 @default.
- W2743129437 cites W2157848968 @default.
- W2743129437 cites W2159699146 @default.
- W2743129437 cites W2160972508 @default.
- W2743129437 cites W2168575125 @default.
- W2743129437 cites W2175191116 @default.
- W2743129437 cites W2286206973 @default.
- W2743129437 cites W2327894203 @default.
- W2743129437 cites W2335437633 @default.
- W2743129437 cites W2405159765 @default.
- W2743129437 cites W2466939964 @default.
- W2743129437 cites W2520861906 @default.
- W2743129437 cites W2524394849 @default.
- W2743129437 cites W2524662608 @default.
- W2743129437 cites W2574388714 @default.
- W2743129437 cites W2614818206 @default.
- W2743129437 cites W3105835503 @default.
- W2743129437 doi "https://doi.org/10.1109/tbdata.2017.2735991" @default.
- W2743129437 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5929142" @default.
- W2743129437 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29725610" @default.
- W2743129437 hasPublicationYear "2017" @default.
- W2743129437 type Work @default.
- W2743129437 sameAs 2743129437 @default.
- W2743129437 citedByCount "61" @default.
- W2743129437 countsByYear W27431294372017 @default.
- W2743129437 countsByYear W27431294372018 @default.
- W2743129437 countsByYear W27431294372019 @default.
- W2743129437 countsByYear W27431294372020 @default.
- W2743129437 countsByYear W27431294372021 @default.
- W2743129437 countsByYear W27431294372022 @default.
- W2743129437 countsByYear W27431294372023 @default.
- W2743129437 crossrefType "journal-article" @default.
- W2743129437 hasAuthorship W2743129437A5000937401 @default.
- W2743129437 hasAuthorship W2743129437A5033720496 @default.
- W2743129437 hasAuthorship W2743129437A5037340898 @default.
- W2743129437 hasAuthorship W2743129437A5060016795 @default.
- W2743129437 hasBestOaLocation W27431294372 @default.
- W2743129437 hasConcept C105795698 @default.
- W2743129437 hasConcept C114614502 @default.
- W2743129437 hasConcept C119857082 @default.
- W2743129437 hasConcept C124101348 @default.
- W2743129437 hasConcept C132525143 @default.
- W2743129437 hasConcept C136764020 @default.
- W2743129437 hasConcept C148483581 @default.
- W2743129437 hasConcept C152877465 @default.
- W2743129437 hasConcept C153180895 @default.
- W2743129437 hasConcept C154945302 @default.
- W2743129437 hasConcept C164226766 @default.
- W2743129437 hasConcept C2524010 @default.
- W2743129437 hasConcept C2776036281 @default.